Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
  • G gritalent
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 1
    • Issues 1
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • Value stream
    • CI/CD
    • Repository
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • Milagros Knott
  • gritalent
  • Issues
  • #1

Closed
Open
Created Feb 07, 2025 by Milagros Knott@milagrosknottMaintainer

DeepSeek Open-Sources DeepSeek-R1 LLM with Performance Comparable To OpenAI's O1 Model


DeepSeek open-sourced DeepSeek-R1, an LLM fine-tuned with support knowing (RL) to improve reasoning ability. DeepSeek-R1 attains results on par with OpenAI's o1 model on numerous standards, consisting of MATH-500 and SWE-bench.

DeepSeek-R1 is based upon DeepSeek-V3, a mix of experts (MoE) design recently open-sourced by DeepSeek. This base model is fine-tuned using Group Relative Policy Optimization (GRPO), a reasoning-oriented version of RL. The research team likewise carried out knowledge distillation from DeepSeek-R1 to open-source Qwen and Llama designs and launched a number of versions of each; these designs outshine larger models, including GPT-4, on mathematics and .

[DeepSeek-R1 is] the first action towards enhancing language design thinking capabilities using pure support learning (RL). Our goal is to check out the potential of LLMs to establish thinking capabilities without any supervised information, concentrating on their self-evolution through a pure RL process...DeepSeek-R1 ... master a wide range of tasks, consisting of imaginative writing, general question answering, editing, summarization, and more. Additionally, DeepSeek-R1 demonstrates impressive performance on jobs needing long-context understanding, considerably outshining DeepSeek-V3 on long-context standards.

To establish the design, DeepSeek started with DeepSeek-V3 as a base. They initially tried fine-tuning it only with RL, and without any monitored fine-tuning (SFT), producing a model called DeepSeek-R1-Zero, which they have actually likewise released. This design shows strong thinking performance, however" powerful thinking behaviors, it faces a number of problems. For circumstances, DeepSeek-R1-Zero struggles with difficulties like bad readability and language mixing."

To address this, the team used a short stage of SFT to avoid the "cold start" problem of RL. They gathered a number of thousand examples of chain-of-thought thinking to use in SFT of DeepSeek-V3 before running RL. After the RL procedure converged, they then gathered more SFT information utilizing rejection sampling, resulting in a dataset of 800k samples. This dataset was used for more fine-tuning and to produce the distilled designs from Llama and Qwen.

DeepSeek examined their design on a range of reasoning, math, and coding benchmarks and compared it to other designs, systemcheck-wiki.de including Claude-3.5- Sonnet, GPT-4o, and o1. DeepSeek-R1 outperformed all of them on several of the benchmarks, consisting of AIME 2024 and wiki.snooze-hotelsoftware.de MATH-500.

DeepSeek-R1 Performance. Image Source: DeepSeek-R1 Technical Report

Within a couple of days of its release, the LMArena revealed that DeepSeek-R1 was ranked # 3 general in the arena and # 1 in coding and mathematics. It was likewise tied for # 1 with o1 in "Hard Prompt with Style Control" classification.

Django structure co-creator Simon Willison discussed his try outs among the DeepSeek distilled Llama models on his blog site:

Each action starts with a ... pseudo-XML tag containing the chain of idea used to assist create the reaction. [Given the timely] "a joke about a pelican and a walrus who run a tea room together" ... It then believed for 20 paragraphs before outputting the joke! ... [T] he joke is terrible. But the process of getting there was such an intriguing insight into how these new designs work.

Andrew Ng's newsletter The Batch blogged about DeepSeek-R1:

DeepSeek is rapidly becoming a strong home builder of open models. Not just are these models fantastic entertainers, however their license permits usage of their outputs for distillation, potentially pressing forward the state of the art for language models (and multimodal models) of all sizes.

The DeepSeek-R1 models are available on HuggingFace.

About the Author

Anthony Alford

Rate this Article

This material remains in the AI, ML & Data Engineering subject

Related Topics:

- AI, ML & Data Engineering

  • Generative AI
  • Large language models

    - Related Editorial

    Related Sponsored Content

    - [eBook] Getting Going with Azure Kubernetes Service

    Related Sponsor

    Free services for AI apps. Are you ready to try out innovative innovations? You can start building smart apps with complimentary Azure app, wiki.whenparked.com information, and AI services to lessen upfront costs. Find out more.

    How could we enhance? Take the InfoQ reader study

    Each year, we look for feedback from our readers to assist us improve InfoQ. Would you mind costs 2 minutes to share your feedback in our brief survey? Your feedback will straight help us continually progress how we support you. The InfoQ Team Take the study

    Related Content

    The InfoQ Newsletter

    A round-up of recently's material on InfoQ sent every Tuesday. Join a community of over 250,000 senior designers.
Assignee
Assign to
Time tracking