Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
  • W waterparknewengland
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 3
    • Issues 3
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • Value stream
    • CI/CD
    • Repository
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • Irish Faulk
  • waterparknewengland
  • Issues
  • #3

Closed
Open
Created Feb 02, 2025 by Irish Faulk@irishfaulk5132Maintainer

Artificial General Intelligence


Artificial basic intelligence (AGI) is a kind of expert system (AI) that matches or exceeds human cognitive capabilities across a vast array of cognitive jobs. This contrasts with narrow AI, which is restricted to particular tasks. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that considerably surpasses human cognitive capabilities. AGI is considered one of the meanings of strong AI.

Creating AGI is a primary goal of AI research study and of companies such as OpenAI [2] and Meta. [3] A 2020 survey recognized 72 active AGI research study and development projects across 37 nations. [4]
The timeline for achieving AGI stays a topic of ongoing dispute amongst researchers and experts. Since 2023, some argue that it may be possible in years or years; others preserve it may take a century or longer; a minority think it might never be achieved; and another minority claims that it is currently here. [5] [6] Notable AI scientist Geoffrey Hinton has expressed concerns about the fast development towards AGI, suggesting it could be attained sooner than numerous anticipate. [7]
There is debate on the precise definition of AGI and regarding whether contemporary large language models (LLMs) such as GPT-4 are early forms of AGI. [8] AGI is a typical subject in sci-fi and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many specialists on AI have specified that alleviating the threat of human termination positioned by AGI should be a global concern. [14] [15] Others find the advancement of AGI to be too remote to provide such a danger. [16] [17]
Terminology

AGI is likewise called strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level intelligent AI, or general intelligent action. [21]
Some scholastic sources schedule the term "strong AI" for computer system programs that experience sentience or awareness. [a] In contrast, weak AI (or narrow AI) has the ability to resolve one particular issue but lacks general cognitive capabilities. [22] [19] Some academic sources use "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the exact same sense as people. [a]
Related concepts include artificial superintelligence and transformative AI. An artificial superintelligence (ASI) is a hypothetical kind of AGI that is a lot more normally smart than human beings, [23] while the idea of transformative AI associates with AI having a big influence on society, for example, similar to the farming or commercial transformation. [24]
A framework for categorizing AGI in levels was proposed in 2023 by Google DeepMind researchers. They define 5 levels of AGI: emerging, skilled, professional, virtuoso, and superhuman. For wiki.snooze-hotelsoftware.de instance, a skilled AGI is specified as an AI that exceeds 50% of skilled grownups in a vast array of non-physical tasks, and a superhuman AGI (i.e. an artificial superintelligence) is likewise specified however with a limit of 100%. They think about big language designs like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]
Characteristics

Various popular definitions of intelligence have been proposed. One of the leading propositions is the Turing test. However, there are other widely known meanings, and some scientists disagree with the more popular methods. [b]
Intelligence characteristics

Researchers normally hold that intelligence is required to do all of the following: [27]
factor, usage technique, solve puzzles, and make judgments under unpredictability represent understanding, consisting of typical sense understanding plan discover

  • communicate in natural language
  • if essential, integrate these abilities in conclusion of any offered objective

Many interdisciplinary techniques (e.g. cognitive science, computational intelligence, and choice making) think about extra traits such as imagination (the ability to form unique mental images and principles) [28] and autonomy. [29]
Computer-based systems that display numerous of these capabilities exist (e.g. see computational imagination, automated thinking, choice support group, robotic, brotato.wiki.spellsandguns.com evolutionary calculation, intelligent agent). There is debate about whether modern AI systems possess them to an adequate degree.

Physical characteristics

Other capabilities are thought about preferable in intelligent systems, as they might affect intelligence or help in its expression. These include: [30]
- the capability to sense (e.g. see, hear, and so on), and - the capability to act (e.g. relocation and manipulate things, modification location to explore, etc).
This includes the ability to discover and react to hazard. [31]
Although the capability to sense (e.g. see, hear, etc) and the ability to act (e.g. move and manipulate objects, modification area to explore, and so on) can be desirable for some smart systems, [30] these physical abilities are not strictly needed for an entity to qualify as AGI-particularly under the thesis that large language models (LLMs) may already be or end up being AGI. Even from a less optimistic viewpoint on LLMs, there is no firm requirement for an AGI to have a human-like kind; being a silicon-based computational system is adequate, supplied it can process input (language) from the external world in place of human senses. This analysis aligns with the understanding that AGI has actually never been proscribed a particular physical embodiment and therefore does not require a capacity for locomotion or traditional "eyes and ears". [32]
Tests for human-level AGI

Several tests implied to confirm human-level AGI have actually been thought about, consisting of: [33] [34]
The concept of the test is that the machine has to attempt and pretend to be a man, by addressing concerns put to it, and it will only pass if the pretence is reasonably persuading. A substantial part of a jury, who need to not be professional about devices, should be taken in by the pretence. [37]
AI-complete problems

An issue is informally called "AI-complete" or "AI-hard" if it is thought that in order to solve it, one would require to execute AGI, because the service is beyond the abilities of a purpose-specific algorithm. [47]
There are many problems that have been conjectured to need general intelligence to resolve in addition to human beings. Examples include computer system vision, natural language understanding, and dealing with unforeseen situations while resolving any real-world problem. [48] Even a specific job like translation requires a machine to read and compose in both languages, follow the author's argument (reason), understand the context (understanding), and faithfully replicate the author's initial intent (social intelligence). All of these problems need to be resolved simultaneously in order to reach human-level maker performance.

However, a number of these tasks can now be performed by modern big language models. According to Stanford University's 2024 AI index, AI has actually reached human-level efficiency on numerous standards for checking out understanding and visual thinking. [49]
History

Classical AI

Modern AI research study began in the mid-1950s. [50] The very first generation of AI researchers were encouraged that artificial general intelligence was possible which it would exist in simply a couple of years. [51] AI leader Herbert A. Simon composed in 1965: "makers will be capable, within twenty years, of doing any work a male can do." [52]
Their predictions were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they might develop by the year 2001. AI leader Marvin Minsky was an expert [53] on the task of making HAL 9000 as practical as possible according to the consensus forecasts of the time. He said in 1967, "Within a generation ... the issue of developing 'synthetic intelligence' will substantially be solved". [54]
Several classical AI jobs, such as Doug Lenat's Cyc job (that began in 1984), and Allen Newell's Soar job, were directed at AGI.

However, in the early 1970s, it ended up being obvious that researchers had grossly undervalued the trouble of the project. Funding agencies ended up being hesitant of AGI and put researchers under increasing pressure to produce helpful "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that included AGI objectives like "bring on a table talk". [58] In reaction to this and the success of expert systems, both market and government pumped cash into the field. [56] [59] However, confidence in AI stunningly collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never ever fulfilled. [60] For the second time in twenty years, AI scientists who anticipated the impending achievement of AGI had been misinterpreted. By the 1990s, AI researchers had a reputation for making vain pledges. They became reluctant to make predictions at all [d] and avoided reference of "human level" artificial intelligence for worry of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research study

In the 1990s and early 21st century, mainstream AI attained business success and scholastic respectability by focusing on particular sub-problems where AI can produce proven results and business applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now utilized thoroughly throughout the technology industry, and research in this vein is greatly moneyed in both academic community and market. As of 2018 [upgrade], development in this field was considered an emerging trend, and a mature phase was anticipated to be reached in more than 10 years. [64]
At the millenium, lots of traditional AI researchers [65] hoped that strong AI might be established by integrating programs that fix different sub-problems. Hans Moravec composed in 1988:

I am confident that this bottom-up path to artificial intelligence will one day fulfill the traditional top-down route majority method, all set to supply the real-world proficiency and the commonsense knowledge that has been so frustratingly elusive in thinking programs. Fully smart makers will result when the metaphorical golden spike is driven unifying the two efforts. [65]
However, even at the time, this was disputed. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by specifying:

The expectation has often been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way meet "bottom-up" (sensory) approaches somewhere in between. If the grounding considerations in this paper stand, then this expectation is hopelessly modular and there is really just one viable path from sense to symbols: from the ground up. A free-floating symbolic level like the software application level of a computer system will never be reached by this path (or vice versa) - nor is it clear why we need to even attempt to reach such a level, given that it looks as if getting there would simply total up to uprooting our symbols from their intrinsic meanings (thus merely minimizing ourselves to the practical equivalent of a programmable computer). [66]
Modern synthetic general intelligence research

The term "artificial basic intelligence" was used as early as 1997, by Mark Gubrud [67] in a conversation of the implications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent maximises "the capability to satisfy objectives in a large range of environments". [68] This kind of AGI, characterized by the ability to increase a mathematical definition of intelligence instead of display human-like behaviour, [69] was also called universal expert system. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary outcomes". The very first summertime school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, organized by Lex Fridman and featuring a variety of visitor speakers.

Since 2023 [update], a small number of computer researchers are active in AGI research study, and numerous contribute to a series of AGI conferences. However, significantly more researchers have an interest in open-ended knowing, [76] [77] which is the idea of allowing AI to continually learn and innovate like people do.

Feasibility

Since 2023, the advancement and potential accomplishment of AGI remains a topic of extreme argument within the AI community. While standard consensus held that AGI was a far-off objective, recent advancements have led some scientists and industry figures to declare that early types of AGI may currently exist. [78] AI pioneer Herbert A. Simon hypothesized in 1965 that "makers will be capable, within twenty years, of doing any work a male can do". This forecast stopped working to come real. Microsoft co-founder Paul Allen thought that such intelligence is not likely in the 21st century because it would need "unforeseeable and basically unforeseeable breakthroughs" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf in between contemporary computing and human-level expert system is as large as the gulf between existing space flight and useful faster-than-light spaceflight. [80]
A more challenge is the lack of clearness in defining what intelligence involves. Does it need consciousness? Must it show the ability to set goals along with pursue them? Is it purely a matter of scale such that if design sizes increase adequately, intelligence will emerge? Are facilities such as preparation, reasoning, and causal understanding required? Does intelligence need explicitly duplicating the brain and its specific faculties? Does it need feelings? [81]
Most AI researchers think strong AI can be accomplished in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of achieving strong AI. [82] [83] John McCarthy is amongst those who think human-level AI will be achieved, however that today level of progress is such that a date can not properly be anticipated. [84] AI professionals' views on the feasibility of AGI wax and wane. Four polls performed in 2012 and 2013 recommended that the typical price quote among experts for when they would be 50% positive AGI would get here was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the specialists, 16.5% addressed with "never" when asked the exact same concern but with a 90% confidence rather. [85] [86] Further current AGI progress considerations can be found above Tests for confirming human-level AGI.

A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year amount of time there is a strong bias towards forecasting the arrival of human-level AI as in between 15 and 25 years from the time the forecast was made". They analyzed 95 forecasts made between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft scientists published an in-depth examination of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, our company believe that it might reasonably be considered as an early (yet still incomplete) version of a synthetic basic intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 outshines 99% of human beings on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a significant level of basic intelligence has actually already been achieved with frontier designs. They composed that hesitation to this view comes from four main reasons: a "healthy uncertainty about metrics for AGI", an "ideological dedication to alternative AI theories or strategies", a "devotion to human (or biological) exceptionalism", or a "concern about the financial ramifications of AGI". [91]
2023 also marked the emergence of big multimodal models (large language models capable of processing or creating several modalities such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the first of a series of designs that "spend more time believing before they respond". According to Mira Murati, this ability to believe before reacting represents a brand-new, extra paradigm. It enhances model outputs by investing more computing power when producing the response, whereas the model scaling paradigm enhances outputs by increasing the model size, training information and training calculate power. [93] [94]
An OpenAI staff member, Vahid Kazemi, claimed in 2024 that the company had actually achieved AGI, specifying, "In my viewpoint, we have already achieved AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any job", it is "better than many people at many tasks." He also addressed criticisms that big language designs (LLMs) merely follow predefined patterns, comparing their knowing process to the scientific technique of observing, hypothesizing, and confirming. These declarations have stimulated argument, as they rely on a broad and non-traditional definition of AGI-traditionally comprehended as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's designs show remarkable adaptability, they may not fully fulfill this standard. Notably, Kazemi's comments came soon after OpenAI eliminated "AGI" from the terms of its collaboration with Microsoft, prompting speculation about the business's tactical objectives. [95]
Timescales

Progress in synthetic intelligence has actually historically gone through durations of quick development separated by periods when progress appeared to stop. [82] Ending each hiatus were basic advances in hardware, software or both to produce area for further progress. [82] [98] [99] For example, the hardware readily available in the twentieth century was not adequate to implement deep learning, which requires great deals of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel states that quotes of the time required before a really versatile AGI is constructed vary from ten years to over a century. Since 2007 [update], the agreement in the AGI research study neighborhood seemed to be that the timeline talked about by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was plausible. [103] Mainstream AI researchers have actually provided a vast array of opinions on whether development will be this rapid. A 2012 meta-analysis of 95 such opinions found a bias towards predicting that the onset of AGI would happen within 16-26 years for modern-day and historical predictions alike. That paper has actually been slammed for how it categorized viewpoints as expert or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competitors with a top-5 test error rate of 15.3%, substantially much better than the second-best entry's rate of 26.3% (the traditional approach utilized a weighted amount of ratings from various pre-defined classifiers). [105] AlexNet was considered as the initial ground-breaker of the current deep knowing wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on openly available and easily accessible weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ value of about 47, which corresponds roughly to a six-year-old kid in very first grade. An adult pertains to about 100 on average. Similar tests were performed in 2014, with the IQ rating reaching an optimum worth of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language design efficient in carrying out numerous diverse tasks without particular training. According to Gary Grossman in a VentureBeat article, while there is agreement that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be categorized as a narrow AI system. [108]
In the same year, Jason Rohrer used his GPT-3 account to develop a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI requested for modifications to the chatbot to comply with their safety guidelines; Rohrer detached Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system capable of carrying out more than 600 different tasks. [110]
In 2023, Microsoft Research released a study on an early version of OpenAI's GPT-4, contending that it showed more basic intelligence than previous AI models and demonstrated human-level efficiency in jobs covering numerous domains, such as mathematics, coding, and law. This research study sparked an argument on whether GPT-4 might be considered an early, insufficient version of artificial general intelligence, highlighting the requirement for additional expedition and evaluation of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton stated that: [112]
The concept that this things might in fact get smarter than individuals - a few individuals thought that, [...] But many people believed it was way off. And I thought it was way off. I thought it was 30 to 50 years and even longer away. Obviously, I no longer believe that.

In May 2023, Demis Hassabis likewise stated that "The progress in the last few years has actually been quite unbelievable", and that he sees no reason why it would decrease, expecting AGI within a years or even a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, stated his expectation that within five years, AI would be capable of passing any test a minimum of as well as people. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a previous OpenAI worker, estimated AGI by 2027 to be "noticeably plausible". [115]
Whole brain emulation

While the advancement of transformer designs like in ChatGPT is thought about the most promising course to AGI, [116] [117] entire brain emulation can function as an alternative method. With entire brain simulation, a brain model is developed by scanning and mapping a biological brain in detail, and then copying and imitating it on a computer system or another computational device. The simulation model must be adequately devoted to the initial, so that it acts in practically the very same way as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is talked about in computational neuroscience and neuroinformatics, and for medical research study functions. It has actually been talked about in expert system research study [103] as a technique to strong AI. Neuroimaging technologies that might provide the necessary detailed understanding are improving rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] anticipates that a map of adequate quality will appear on a similar timescale to the computing power required to replicate it.

Early approximates

For low-level brain simulation, a really effective cluster of computer systems or GPUs would be required, provided the massive quantity of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number declines with age, supporting by adulthood. Estimates differ for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A quote of the brain's processing power, based upon a simple switch design for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at various price quotes for the hardware required to equate to the human brain and adopted a figure of 1016 calculations per 2nd (cps). [e] (For contrast, if a "calculation" was comparable to one "floating-point operation" - a procedure utilized to rate present supercomputers - then 1016 "calculations" would be comparable to 10 petaFLOPS, attained in 2011, while 1018 was accomplished in 2022.) He used this figure to anticipate the essential hardware would be available sometime in between 2015 and 2025, if the rapid growth in computer system power at the time of writing continued.

Current research

The Human Brain Project, an EU-funded effort active from 2013 to 2023, has established a particularly comprehensive and publicly available atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.

Criticisms of simulation-based approaches

The synthetic nerve cell design assumed by Kurzweil and used in numerous current synthetic neural network implementations is basic compared with biological neurons. A brain simulation would likely need to record the in-depth cellular behaviour of biological neurons, currently comprehended just in broad outline. The overhead introduced by full modeling of the biological, chemical, and physical information of neural behaviour (especially on a molecular scale) would need computational powers numerous orders of magnitude bigger than Kurzweil's quote. In addition, the price quotes do not account for glial cells, which are understood to play a function in cognitive processes. [125]
A fundamental criticism of the simulated brain method obtains from embodied cognition theory which asserts that human personification is an important aspect of human intelligence and is needed to ground significance. [126] [127] If this theory is appropriate, any fully functional brain design will need to incorporate more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as an alternative, but it is unidentified whether this would suffice.

Philosophical point of view

"Strong AI" as specified in philosophy

In 1980, theorist John Searle created the term "strong AI" as part of his Chinese space argument. [128] He proposed a difference in between 2 hypotheses about synthetic intelligence: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "consciousness". Weak AI hypothesis: A synthetic intelligence system can (only) act like it thinks and has a mind and consciousness.
The first one he called "strong" due to the fact that it makes a more powerful declaration: it presumes something special has actually taken place to the maker that exceeds those abilities that we can evaluate. The behaviour of a "weak AI" machine would be specifically identical to a "strong AI" device, however the latter would also have subjective conscious experience. This usage is also typical in scholastic AI research study and textbooks. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil use the term "strong AI" to suggest "human level synthetic basic intelligence". [102] This is not the exact same as Searle's strong AI, unless it is assumed that consciousness is required for human-level AGI. Academic theorists such as Searle do not think that holds true, and to most expert system researchers the concern is out-of-scope. [130]
Mainstream AI is most thinking about how a program acts. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it genuine or a simulation." [130] If the program can act as if it has a mind, then there is no requirement to know if it in fact has mind - certainly, there would be no method to inform. For AI research, Searle's "weak AI hypothesis" is comparable to the declaration "artificial general intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for granted, and don't care about the strong AI hypothesis." [130] Thus, for academic AI research study, "Strong AI" and "AGI" are two various things.

Consciousness

Consciousness can have different meanings, and some aspects play significant functions in science fiction and the ethics of expert system:

Sentience (or "incredible consciousness"): The capability to "feel" understandings or emotions subjectively, as opposed to the capability to reason about understandings. Some theorists, such as David Chalmers, use the term "consciousness" to refer exclusively to extraordinary awareness, which is approximately comparable to life. [132] Determining why and how subjective experience emerges is understood as the hard problem of awareness. [133] Thomas Nagel discussed in 1974 that it "feels like" something to be conscious. If we are not mindful, then it does not feel like anything. Nagel uses the example of a bat: we can smartly ask "what does it feel like to be a bat?" However, we are unlikely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems conscious (i.e., has awareness) but a toaster does not. [134] In 2022, a Google engineer declared that the company's AI chatbot, LaMDA, had actually achieved life, though this claim was commonly challenged by other experts. [135]
Self-awareness: To have mindful awareness of oneself as a different individual, particularly to be purposely familiar with one's own ideas. This is opposed to merely being the "subject of one's believed"-an operating system or debugger is able to be "familiar with itself" (that is, to represent itself in the exact same way it represents everything else)-however this is not what individuals generally imply when they use the term "self-awareness". [g]
These traits have an ethical dimension. AI life would trigger concerns of well-being and legal protection, similarly to animals. [136] Other aspects of awareness associated to cognitive capabilities are likewise pertinent to the principle of AI rights. [137] Determining how to incorporate innovative AI with existing legal and social frameworks is an emerging issue. [138]
Benefits

AGI might have a variety of applications. If oriented towards such objectives, AGI might help reduce various problems on the planet such as hunger, hardship and health issues. [139]
AGI might enhance productivity and efficiency in a lot of jobs. For example, in public health, AGI might accelerate medical research, significantly versus cancer. [140] It might take care of the senior, [141] and equalize access to rapid, high-quality medical diagnostics. It might use enjoyable, inexpensive and personalized education. [141] The need to work to subsist could become outdated if the wealth produced is effectively redistributed. [141] [142] This likewise raises the concern of the place of people in a drastically automated society.

AGI might likewise assist to make reasonable decisions, and to anticipate and prevent catastrophes. It might also help to enjoy the benefits of possibly disastrous innovations such as nanotechnology or climate engineering, while preventing the associated dangers. [143] If an AGI's primary objective is to prevent existential disasters such as human termination (which might be tough if the Vulnerable World Hypothesis ends up being real), [144] it might take steps to significantly lower the risks [143] while lessening the impact of these measures on our quality of life.

Risks

Existential threats

AGI might represent multiple types of existential danger, which are risks that threaten "the premature termination of Earth-originating intelligent life or the long-term and drastic damage of its capacity for desirable future development". [145] The danger of human termination from AGI has actually been the topic of many arguments, however there is also the possibility that the development of AGI would cause a completely flawed future. Notably, it might be used to spread and preserve the set of worths of whoever establishes it. If humankind still has ethical blind areas similar to slavery in the past, AGI may irreversibly entrench it, preventing moral development. [146] Furthermore, AGI could facilitate mass monitoring and brainwashing, which could be utilized to develop a steady repressive around the world totalitarian program. [147] [148] There is also a risk for the devices themselves. If devices that are sentient or otherwise worthy of ethical consideration are mass developed in the future, taking part in a civilizational course that forever ignores their well-being and interests might be an existential disaster. [149] [150] Considering how much AGI could enhance mankind's future and help in reducing other existential threats, Toby Ord calls these existential threats "an argument for proceeding with due care", not for "abandoning AI". [147]
Risk of loss of control and human termination

The thesis that AI postures an existential danger for humans, which this danger requires more attention, is controversial however has actually been endorsed in 2023 by many public figures, AI scientists and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized prevalent indifference:

So, facing possible futures of enormous benefits and risks, the experts are certainly doing everything possible to guarantee the very best result, right? Wrong. If a superior alien civilisation sent us a message stating, 'We'll arrive in a few years,' would we just reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is taking place with AI. [153]
The potential fate of humanity has in some cases been compared to the fate of gorillas threatened by human activities. The contrast mentions that higher intelligence permitted humankind to dominate gorillas, which are now vulnerable in manner ins which they could not have actually prepared for. As a result, the gorilla has ended up being a threatened types, not out of malice, but simply as a civilian casualties from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to dominate mankind and that we should beware not to anthropomorphize them and interpret their intents as we would for human beings. He stated that individuals will not be "smart enough to design super-intelligent devices, yet ridiculously silly to the point of providing it moronic objectives without any safeguards". [155] On the other side, the principle of instrumental convergence suggests that almost whatever their goals, smart representatives will have reasons to attempt to survive and obtain more power as intermediary actions to achieving these goals. And that this does not require having emotions. [156]
Many scholars who are worried about existential danger supporter for more research study into resolving the "control issue" to address the concern: what types of safeguards, algorithms, or architectures can programmers execute to increase the possibility that their recursively-improving AI would continue to behave in a friendly, rather than destructive, manner after it reaches superintelligence? [157] [158] Solving the control issue is complicated by the AI arms race (which might cause a race to the bottom of security precautions in order to launch products before competitors), [159] and using AI in weapon systems. [160]
The thesis that AI can position existential danger also has detractors. Skeptics generally say that AGI is unlikely in the short-term, or that issues about AGI distract from other concerns associated with present AI. [161] Former Google fraud czar Shuman Ghosemajumder considers that for lots of people outside of the technology market, existing chatbots and LLMs are currently viewed as though they were AGI, leading to more misconception and fear. [162]
Skeptics often charge that the thesis is crypto-religious, with an illogical belief in the possibility of superintelligence replacing an illogical belief in an omnipotent God. [163] Some researchers think that the interaction campaigns on AI existential danger by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at effort at regulative capture and to pump up interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other industry leaders and scientists, provided a joint declaration asserting that "Mitigating the danger of extinction from AI should be a worldwide priority together with other societal-scale threats such as pandemics and nuclear war." [152]
Mass unemployment

Researchers from OpenAI estimated that "80% of the U.S. labor force could have at least 10% of their work jobs affected by the introduction of LLMs, while around 19% of workers might see a minimum of 50% of their jobs affected". [166] [167] They think about office workers to be the most exposed, for instance mathematicians, accountants or web designers. [167] AGI might have a much better autonomy, ability to make decisions, to user interface with other computer system tools, however also to manage robotized bodies.

According to Stephen Hawking, the result of automation on the lifestyle will depend on how the wealth will be rearranged: [142]
Everyone can take pleasure in a life of glamorous leisure if the machine-produced wealth is shared, or the majority of people can wind up badly bad if the machine-owners successfully lobby versus wealth redistribution. Up until now, the trend appears to be toward the second alternative, with innovation driving ever-increasing inequality

Elon Musk thinks about that the automation of society will need federal governments to embrace a universal basic earnings. [168]
See also

Artificial brain - Software and hardware with cognitive capabilities similar to those of the animal or human brain AI effect AI safety - Research area on making AI safe and advantageous AI positioning - AI conformance to the desired objective A.I. Rising - 2018 film directed by Lazar Bodroža Expert system Automated artificial intelligence - Process of automating the application of maker knowing BRAIN Initiative - Collaborative public-private research initiative revealed by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General video game playing - Ability of expert system to play different games Generative artificial intelligence - AI system capable of creating material in reaction to triggers Human Brain Project - Scientific research study job Intelligence amplification - Use of infotech to augment human intelligence (IA). Machine ethics - Moral behaviours of manufactured devices. Moravec's paradox. Multi-task learning - Solving numerous device discovering jobs at the very same time. Neural scaling law - Statistical law in artificial intelligence. Outline of expert system - Overview of and topical guide to artificial intelligence. Transhumanism - Philosophical motion. Synthetic intelligence - Alternate term for or form of expert system. Transfer knowing - Machine learning strategy. Loebner Prize - Annual AI competitors. Hardware for synthetic intelligence - Hardware specifically developed and optimized for artificial intelligence. Weak synthetic intelligence - Form of expert system.
Notes

^ a b See below for the origin of the term "strong AI", and see the scholastic definition of "strong AI" and weak AI in the post Chinese room. ^ AI founder John McCarthy writes: "we can not yet identify in basic what kinds of computational procedures we want to call smart. " [26] (For a conversation of some meanings of intelligence used by synthetic intelligence researchers, see viewpoint of expert system.). ^ The Lighthill report specifically slammed AI's "grandiose goals" and led the taking apart of AI research in England. [55] In the U.S., DARPA ended up being figured out to fund only "mission-oriented direct research, rather than fundamental undirected research". [56] [57] ^ As AI founder John McCarthy writes "it would be an excellent relief to the rest of the employees in AI if the inventors of new basic formalisms would express their hopes in a more safeguarded form than has often held true." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately represent 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil introduced. ^ As defined in a basic AI textbook: "The assertion that devices could possibly act smartly (or, maybe much better, act as if they were smart) is called the 'weak AI' hypothesis by thinkers, and the assertion that devices that do so are actually believing (instead of imitating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References

^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is designed to perform a single job. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to make sure that artificial basic intelligence advantages all of humanity. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new objective is producing synthetic basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to construct AI that is much better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were determined as being active in 2020. ^ a b c "AI timelines: What do experts in artificial intelligence expect for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton quits Google and alerts of danger ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is tough to see how you can avoid the bad stars from using it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals triggers of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you change changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York Times. The real danger is not AI itself however the method we deploy it. ^ "Impressed by artificial intelligence? Experts say AGI is following, and it has 'existential' risks". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might pose existential risks to humanity. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last creation that humanity needs to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the risk of extinction from AI must be a worldwide top priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists alert of threat of extinction from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from producing machines that can outthink us in general methods. ^ LeCun, Yann (June 2023). "AGI does not present an existential threat". Medium. There is no reason to fear AI as an existential risk. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil describes strong AI as "maker intelligence with the complete variety of human intelligence.". ^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical sign system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007. ^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Expert system is changing our world - it is on all of us to make sure that it works out". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent qualities is based on the topics covered by significant AI books, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body shapes the way we believe: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reconsidered: The concept of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reevaluated: The idea of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a genuine kid - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists contest whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not identify GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing everything from the bar examination to AP Biology. Here's a list of difficult examinations both AI variations have passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is outdated. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended testing an AI chatbot's capability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 quoted in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), estimated in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York City Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer scientists and software engineers avoided the term synthetic intelligence for fear of being considered as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer season school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of device intelligence: Despite development in machine intelligence, synthetic general intelligence is still a significant challenge". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Expert system will not develop into a Frankenstein's beast". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why general expert system will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will synthetic intelligence bring us utopia or damage?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in expert system: A survey of professional viewpoint. In Fundamental concerns of expert system (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the original on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational function of GPU computing and deep knowing in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the original on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as smart as Siri - however a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're getting in the AI golden zone between narrow and general AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are currently seeing an early example of an AGI system in the recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the first example of an AGI system? This is arguable, however the agreement is that it is not AGI. ... If nothing else, GPT-3 informs us there is a happy medium between narrow and general AI. ^ Quach, Katyanna. "A designer developed an AI chatbot utilizing GPT-3 that helped a male speak once again to his late fiancée. OpenAI shut it down". The Register. Archived from the initial on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's brand-new AI can carry out over 600 tasks, from playing video games to managing robots", TechCrunch, archived from the initial on 16 June 2022, retrieved 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York City Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. might match human intelligence in 'just a few years,' states CEO of Google's main A.I. research study lab". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI could pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everybody seems to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Giant Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research task maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A large range of views in current research study, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer may become possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For instance: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced quote in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (quoted in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.


^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for interest by the field about why a program behaves the way it does. ^ Chalmers, David J. (9 August 2023). "Could a Big Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the business's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense exceed advantages?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Take advantage of Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: paths, threats, strategies (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that humans will destroy ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security threat' to Australia, Senate inquiry states". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence looks at the ramifications of synthetic intelligence - but are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The fascinating Facebook argument between Yann LeCun, Stuart Russel and bphomesteading.com Yoshua Bengio about the risks of strong AI". The remarkable Facebook argument between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI (in French). Retrieved 8 June 2023. ^ "Will Expert System Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to disastrous AGI danger: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race risks spiralling out of control, report cautions". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over hazard positioned however artificial intelligence can not be disregarded". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stoking fears over AI, caution researchers". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain founder says big tech is lying about AI extinction threat". Australian Financial Review. Archived from the original on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early appearance at the labor market effect capacity of big language designs". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of employees might see their jobs impacted by AI. These are the tasks most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk states we require universal basic income because 'in the future, physical work will be an option'". Business Insider. Archived from the initial on 9 July 2023. Retrieved 8 June 2023. Sources

UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Artificial intelligence and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Look For Artificial Intelligence. New York, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the original (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level synthetic general intelligence and the possibility of a technological singularity: a response to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Expert system, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, retrieved 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, recovered 7 May 2011. Howe, J. (November 1994), Expert System at Edinburgh University: a Viewpoint, archived from the initial on 17 August 2007, recovered 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Artificial Intelligence: a paper seminar, Science Research Council. Luger, George; Stubblefield, William (2004 ), Expert System: Structures and Strategies for Complex Problem Solving (5th ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The ultimate effort is to make computer system programs that can fix issues and accomplish goals on the planet as well as humans. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will computer hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the initial on 15 June 2006, obtained 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, obtained 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Technology as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Expert System", Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, recovered 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Rational Approach, New York: Oxford University Press, archived from the original on 25 July 2009, recovered 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, retrieved 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the initial on 17 March 2019, obtained 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on significance and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading

Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, recovered 4 September 2013 - through ResearchGate Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, retrieved 31 August 2012 Cukier, Kenneth, "Ready for parentingliteracy.com Robots? How to Think of the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what might be called "Dyson's Law") that "Any system easy sufficient to be understandable will not be complicated enough to behave wisely, while any system complicated enough to act intelligently will be too complicated to understand." (p. 197.) Computer scientist Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead simple dumb. They work, however they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, recovered 25 July 2010. Gleick, James, "The Fate of Free Choice" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York City Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what differentiates us from devices. For biological animals, reason and purpose come from acting in the world and experiencing the repercussions. Artificial intelligences - disembodied, complete strangers to blood, sweat, and tears - have no event for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably expect that those who want to get abundant from AI are going to have the interests of the rest of us close at heart,' ... writes [Gary Marcus] 'We can't depend on federal governments driven by project finance contributions [from tech companies] to push back.' ... Marcus details the needs that residents ought to make from their federal governments and the tech business. They consist of openness on how AI systems work; settlement for people if their information [are] utilized to train LLMs (large language design) s and the right to grant this use; and the capability to hold tech companies responsible for the damages they trigger by removing Section 230, enforcing cash penalites, and passing more stringent item liability laws ... Marcus likewise suggests ... that a brand-new, AI-specific federal firm, similar to the FDA, the FCC, or the FTC, might offer the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... recommends ... establish [ing] an expert licensing program for engineers that would operate in a similar method to medical licenses, malpractice fits, and the Hippocratic oath in medicine. 'What if, like physicians,' she asks ..., 'AI engineers likewise promised to do no damage?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has baffled human beings for decades, exposes the restrictions of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder mystery competitors has revealed that although NLP (natural-language processing) designs can incredible feats, their abilities are quite restricted by the quantity of context they receive. This [...] could cause [troubles] for researchers who wish to use them to do things such as analyze ancient languages. Sometimes, there are few historic records on long-gone civilizations to serve as training information for such a function." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to generate phony videos identical from genuine ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we imply reasonable videos produced utilizing synthetic intelligence that actually trick individuals, then they barely exist. The phonies aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in basic, operating in our media as counterfeited proof. Their function better resembles that of animations, specifically smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We must avoid humanizing machine-learning models utilized in clinical research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a device a conversation?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the most recent, buzziest systems of artificial general intelligence are stymmied by the usual issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Expert System, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, recovered 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, provided and dispersed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead police to disregard contradictory evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [basic intelligence] test but revealed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at tasks that need real humanlike thinking or an understanding of the physical and social world ... ChatGPT appeared unable to factor rationally and attempted to rely on its large database of ... facts derived from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are effective however unreliable. Rules-based systems can not deal with scenarios their developers did not expect. Learning systems are limited by the data on which they were trained. AI failures have currently resulted in tragedy. Advanced autopilot features in cars, although they perform well in some circumstances, have driven automobiles without warning into trucks, concrete barriers, and parked cars. In the wrong scenario, AI systems go from supersmart to superdumb in an immediate. When an opponent is trying to control and hack an AI system, the threats are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by new innovations but count on the timelelss human tendency to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.
Assignee
Assign to
Time tracking