Artificial General Intelligence
Artificial general intelligence (AGI) is a type of synthetic intelligence (AI) that matches or surpasses human cognitive capabilities throughout a broad variety of cognitive jobs. This contrasts with narrow AI, which is restricted to specific tasks. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that significantly exceeds human cognitive abilities. AGI is considered among the meanings of strong AI.
Creating AGI is a main goal of AI research study and of companies such as OpenAI [2] and Meta. [3] A 2020 survey identified 72 active AGI research study and advancement tasks throughout 37 countries. [4]
The timeline for accomplishing AGI remains a topic of ongoing dispute among researchers and professionals. As of 2023, some argue that it may be possible in years or years; others keep it might take a century or longer; a minority believe it might never be accomplished; and another minority claims that it is currently here. [5] [6] Notable AI scientist Geoffrey Hinton has expressed issues about the fast development towards AGI, recommending it might be accomplished earlier than many expect. [7]
There is dispute on the specific meaning of AGI and relating to whether modern-day big language models (LLMs) such as GPT-4 are early forms of AGI. [8] AGI is a typical topic in science fiction and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential threat. [11] [12] [13] Many professionals on AI have specified that alleviating the danger of human termination postured by AGI should be an international priority. [14] [15] Others find the development of AGI to be too remote to present such a threat. [16] [17]
Terminology
AGI is likewise referred to as strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level smart AI, or basic intelligent action. [21]
Some academic sources reserve the term "strong AI" for computer programs that experience sentience or awareness. [a] In contrast, weak AI (or narrow AI) is able to resolve one specific issue however lacks basic cognitive capabilities. [22] [19] Some academic sources use "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the exact same sense as humans. [a]
Related ideas consist of synthetic superintelligence and transformative AI. A synthetic superintelligence (ASI) is a hypothetical kind of AGI that is a lot more normally smart than people, [23] while the concept of transformative AI associates with AI having a large effect on society, for example, similar to the agricultural or commercial transformation. [24]
A framework for categorizing AGI in levels was proposed in 2023 by Google DeepMind scientists. They specify five levels of AGI: emerging, competent, professional, virtuoso, and superhuman. For instance, a skilled AGI is specified as an AI that outshines 50% of experienced grownups in a vast array of non-physical tasks, and a superhuman AGI (i.e. an artificial superintelligence) is likewise defined however with a limit of 100%. They consider large language designs like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have been proposed. One of the leading proposals is the Turing test. However, there are other popular meanings, and some researchers disagree with the more popular approaches. [b]
Intelligence traits
Researchers normally hold that intelligence is needed to do all of the following: [27]
reason, usage technique, fix puzzles, and make judgments under unpredictability
represent knowledge, including good sense understanding
plan
learn
- interact in natural language
- if necessary, incorporate these abilities in conclusion of any given objective
Many interdisciplinary methods (e.g. cognitive science, computational intelligence, and decision making) think about extra characteristics such as creativity (the ability to form novel psychological images and ideas) [28] and autonomy. [29]
Computer-based systems that exhibit a number of these abilities exist (e.g. see computational creativity, automated reasoning, decision assistance system, robot, evolutionary calculation, smart representative). There is debate about whether modern-day AI systems have them to an appropriate degree.
Physical traits
Other abilities are thought about preferable in smart systems, as they might impact intelligence or aid in its expression. These include: [30]
- the ability to sense (e.g. see, hear, and so on), and - the capability to act (e.g. relocation and manipulate things, modification location to check out, and so on).
This includes the ability to find and react to threat. [31]
Although the ability to sense (e.g. see, hear, and so on) and the capability to act (e.g. move and control objects, modification area to explore, and so on) can be preferable for some intelligent systems, [30] these physical capabilities are not strictly required for an entity to certify as AGI-particularly under the thesis that big language models (LLMs) may already be or end up being AGI. Even from a less positive point of view on LLMs, there is no company requirement for an AGI to have a human-like type; being a silicon-based computational system is enough, supplied it can process input (language) from the external world in place of human senses. This interpretation aligns with the understanding that AGI has never ever been proscribed a specific physical embodiment and therefore does not demand a capacity for mobility or conventional "eyes and ears". [32]
Tests for human-level AGI
Several tests implied to verify human-level AGI have been considered, including: [33] [34]
The concept of the test is that the maker needs to try and pretend to be a guy, by addressing concerns put to it, and it will just pass if the pretence is reasonably persuading. A significant portion of a jury, who should not be professional about makers, should be taken in by the pretence. [37]
AI-complete problems
A problem is informally called "AI-complete" or "AI-hard" if it is believed that in order to resolve it, one would require to carry out AGI, because the solution is beyond the abilities of a purpose-specific algorithm. [47]
There are lots of problems that have actually been conjectured to require basic intelligence to fix in addition to human beings. Examples include computer vision, natural language understanding, and dealing with unanticipated circumstances while solving any real-world issue. [48] Even a particular job like translation needs a device to check out and write in both languages, follow the author's argument (reason), comprehend the context (knowledge), and consistently reproduce the author's original intent (social intelligence). All of these problems require to be resolved at the same time in order to reach human-level device performance.
However, a number of these tasks can now be performed by modern large language models. According to Stanford University's 2024 AI index, AI has actually reached human-level efficiency on lots of standards for reading comprehension and visual . [49]
History
Classical AI
Modern AI research began in the mid-1950s. [50] The very first generation of AI researchers were convinced that artificial basic intelligence was possible and that it would exist in simply a few years. [51] AI pioneer Herbert A. Simon composed in 1965: "makers will be capable, within twenty years, of doing any work a male can do." [52]
Their forecasts were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they could develop by the year 2001. AI leader Marvin Minsky was a specialist [53] on the job of making HAL 9000 as sensible as possible according to the consensus forecasts of the time. He said in 1967, "Within a generation ... the issue of creating 'expert system' will substantially be fixed". [54]
Several classical AI tasks, such as Doug Lenat's Cyc project (that began in 1984), and Allen Newell's Soar task, were directed at AGI.
However, in the early 1970s, it ended up being apparent that researchers had actually grossly undervalued the trouble of the job. Funding firms ended up being doubtful of AGI and put scientists under increasing pressure to produce beneficial "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that included AGI goals like "bring on a casual conversation". [58] In response to this and the success of professional systems, both industry and government pumped cash into the field. [56] [59] However, confidence in AI amazingly collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never ever fulfilled. [60] For the second time in twenty years, AI scientists who predicted the imminent achievement of AGI had actually been mistaken. By the 1990s, AI researchers had a track record for making vain guarantees. They ended up being hesitant to make predictions at all [d] and avoided mention of "human level" artificial intelligence for fear of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research study
In the 1990s and early 21st century, mainstream AI accomplished commercial success and scholastic respectability by focusing on specific sub-problems where AI can produce verifiable outcomes and industrial applications, such as speech acknowledgment and recommendation algorithms. [63] These "applied AI" systems are now utilized extensively throughout the technology industry, and research in this vein is heavily moneyed in both academic community and industry. As of 2018 [upgrade], development in this field was considered an emerging trend, and a mature stage was expected to be reached in more than 10 years. [64]
At the turn of the century, lots of traditional AI researchers [65] hoped that strong AI might be established by integrating programs that resolve various sub-problems. Hans Moravec composed in 1988:
I am positive that this bottom-up route to artificial intelligence will one day satisfy the conventional top-down route majority way, ready to offer the real-world proficiency and the commonsense knowledge that has been so frustratingly elusive in thinking programs. Fully intelligent machines will result when the metaphorical golden spike is driven unifying the two efforts. [65]
However, even at the time, this was disputed. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by stating:
The expectation has often been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way meet "bottom-up" (sensory) approaches somewhere in between. If the grounding considerations in this paper are valid, then this expectation is hopelessly modular and there is really only one feasible route from sense to signs: from the ground up. A free-floating symbolic level like the software level of a computer system will never ever be reached by this route (or vice versa) - nor is it clear why we must even try to reach such a level, given that it appears arriving would simply amount to uprooting our symbols from their intrinsic meanings (consequently merely minimizing ourselves to the functional equivalent of a programmable computer system). [66]
Modern artificial basic intelligence research
The term "synthetic basic intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a discussion of the implications of fully automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent increases "the capability to please goals in a large variety of environments". [68] This kind of AGI, identified by the ability to maximise a mathematical meaning of intelligence rather than show human-like behaviour, [69] was likewise called universal synthetic intelligence. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary outcomes". The very first summertime school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, arranged by Lex Fridman and featuring a variety of guest lecturers.
As of 2023 [update], a little number of computer system researchers are active in AGI research study, and lots of contribute to a series of AGI conferences. However, progressively more researchers have an interest in open-ended knowing, [76] [77] which is the concept of allowing AI to continually learn and innovate like human beings do.
Feasibility
Since 2023, the development and potential accomplishment of AGI stays a topic of intense argument within the AI community. While traditional agreement held that AGI was a distant goal, current improvements have led some researchers and market figures to declare that early kinds of AGI may already exist. [78] AI leader Herbert A. Simon hypothesized in 1965 that "machines will be capable, within twenty years, of doing any work a male can do". This prediction failed to come true. Microsoft co-founder Paul Allen believed that such intelligence is unlikely in the 21st century since it would need "unforeseeable and basically unforeseeable advancements" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf between contemporary computing and human-level expert system is as broad as the gulf in between current space flight and useful faster-than-light spaceflight. [80]
An additional challenge is the lack of clarity in defining what intelligence entails. Does it require consciousness? Must it display the ability to set objectives along with pursue them? Is it simply a matter of scale such that if design sizes increase sufficiently, intelligence will emerge? Are centers such as planning, reasoning, and causal understanding required? Does intelligence need clearly reproducing the brain and its specific faculties? Does it need feelings? [81]
Most AI scientists believe strong AI can be accomplished in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of accomplishing strong AI. [82] [83] John McCarthy is amongst those who believe human-level AI will be accomplished, but that the present level of progress is such that a date can not properly be anticipated. [84] AI experts' views on the expediency of AGI wax and wane. Four surveys performed in 2012 and 2013 recommended that the typical quote amongst experts for when they would be 50% positive AGI would get here was 2040 to 2050, depending upon the survey, with the mean being 2081. Of the experts, 16.5% answered with "never ever" when asked the very same question but with a 90% self-confidence rather. [85] [86] Further current AGI development factors to consider can be found above Tests for verifying human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year amount of time there is a strong bias towards forecasting the arrival of human-level AI as between 15 and 25 years from the time the prediction was made". They evaluated 95 predictions made in between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft scientists published an in-depth examination of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, we believe that it might reasonably be viewed as an early (yet still insufficient) variation of a synthetic basic intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 exceeds 99% of people on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a substantial level of basic intelligence has already been achieved with frontier designs. They composed that unwillingness to this view originates from 4 primary reasons: a "healthy skepticism about metrics for AGI", an "ideological commitment to alternative AI theories or strategies", a "commitment to human (or biological) exceptionalism", or a "issue about the economic ramifications of AGI". [91]
2023 likewise marked the introduction of large multimodal designs (big language designs efficient in processing or producing multiple techniques such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the very first of a series of models that "invest more time believing before they react". According to Mira Murati, this ability to believe before reacting represents a new, extra paradigm. It improves model outputs by investing more computing power when producing the answer, whereas the model scaling paradigm improves outputs by increasing the model size, training data and training calculate power. [93] [94]
An OpenAI staff member, Vahid Kazemi, claimed in 2024 that the business had actually attained AGI, specifying, "In my opinion, we have currently accomplished AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any job", it is "much better than most humans at most tasks." He likewise addressed criticisms that large language designs (LLMs) merely follow predefined patterns, comparing their learning process to the clinical technique of observing, hypothesizing, and confirming. These declarations have triggered argument, as they depend on a broad and non-traditional definition of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's models demonstrate remarkable flexibility, they may not completely meet this requirement. Notably, Kazemi's remarks came soon after OpenAI eliminated "AGI" from the terms of its collaboration with Microsoft, prompting speculation about the company's strategic intentions. [95]
Timescales
Progress in expert system has historically gone through durations of rapid progress separated by periods when progress appeared to stop. [82] Ending each hiatus were essential advances in hardware, software or both to produce space for additional progress. [82] [98] [99] For example, the computer system hardware offered in the twentieth century was not adequate to execute deep learning, which needs great deals of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel states that price quotes of the time needed before a really versatile AGI is developed vary from 10 years to over a century. Since 2007 [upgrade], the agreement in the AGI research study neighborhood appeared to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was possible. [103] Mainstream AI scientists have given a large range of opinions on whether progress will be this quick. A 2012 meta-analysis of 95 such opinions discovered a bias towards forecasting that the onset of AGI would occur within 16-26 years for contemporary and historic forecasts alike. That paper has been criticized for how it categorized viewpoints as specialist or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competitors with a top-5 test error rate of 15.3%, substantially much better than the second-best entry's rate of 26.3% (the traditional technique utilized a weighted sum of ratings from different pre-defined classifiers). [105] AlexNet was considered as the preliminary ground-breaker of the present deep knowing wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on openly readily available and freely accessible weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ value of about 47, which corresponds approximately to a six-year-old kid in first grade. A grownup comes to about 100 usually. Similar tests were performed in 2014, with the IQ score reaching an optimum value of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language model capable of carrying out many varied jobs without specific training. According to Gary Grossman in a VentureBeat post, while there is consensus that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be categorized as a narrow AI system. [108]
In the same year, Jason Rohrer utilized his GPT-3 account to develop a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI requested for modifications to the chatbot to abide by their safety standards; Rohrer detached Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system capable of carrying out more than 600 various tasks. [110]
In 2023, Microsoft Research published a research study on an early version of OpenAI's GPT-4, competing that it exhibited more general intelligence than previous AI models and showed human-level performance in jobs covering several domains, such as mathematics, coding, and law. This research study sparked a dispute on whether GPT-4 might be considered an early, incomplete version of artificial basic intelligence, emphasizing the need for additional exploration and evaluation of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton stated that: [112]
The concept that this things might really get smarter than individuals - a couple of individuals believed that, [...] But the majority of people thought it was way off. And I believed it was way off. I thought it was 30 to 50 years or perhaps longer away. Obviously, I no longer think that.
In May 2023, Demis Hassabis similarly said that "The progress in the last few years has actually been quite unbelievable", and that he sees no reason it would decrease, expecting AGI within a decade or perhaps a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, mentioned his expectation that within 5 years, AI would can passing any test at least along with human beings. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a previous OpenAI employee, approximated AGI by 2027 to be "noticeably plausible". [115]
Whole brain emulation
While the development of transformer designs like in ChatGPT is considered the most promising course to AGI, [116] [117] entire brain emulation can function as an alternative technique. With entire brain simulation, a brain design is developed by scanning and mapping a biological brain in information, and then copying and imitating it on a computer system or another computational gadget. The simulation design need to be adequately faithful to the original, so that it acts in virtually the very same method as the initial brain. [118] Whole brain emulation is a type of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research study purposes. It has actually been discussed in synthetic intelligence research study [103] as an approach to strong AI. Neuroimaging technologies that could deliver the required comprehensive understanding are enhancing rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] anticipates that a map of adequate quality will end up being readily available on a similar timescale to the computing power required to replicate it.
Early estimates
For low-level brain simulation, a very effective cluster of computer systems or GPUs would be required, provided the enormous quantity of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on average 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by the adult years. Estimates differ for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] An estimate of the brain's processing power, based on an easy switch design for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at numerous estimates for the hardware needed to equal the human brain and adopted a figure of 1016 calculations per 2nd (cps). [e] (For contrast, if a "computation" was comparable to one "floating-point operation" - a step utilized to rate present supercomputers - then 1016 "computations" would be equivalent to 10 petaFLOPS, attained in 2011, while 1018 was accomplished in 2022.) He used this figure to forecast the necessary hardware would be available at some point in between 2015 and 2025, if the rapid development in computer power at the time of writing continued.
Current research study
The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has established a particularly detailed and openly accessible atlas of the human brain. [124] In 2023, researchers from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based methods
The artificial nerve cell model presumed by Kurzweil and used in many current synthetic neural network executions is easy compared with biological nerve cells. A brain simulation would likely need to capture the in-depth cellular behaviour of biological neurons, presently comprehended just in broad outline. The overhead presented by complete modeling of the biological, chemical, and physical details of neural behaviour (specifically on a molecular scale) would require computational powers numerous orders of magnitude larger than Kurzweil's price quote. In addition, the quotes do not account for glial cells, which are known to play a function in cognitive procedures. [125]
A basic criticism of the simulated brain approach originates from embodied cognition theory which asserts that human embodiment is a necessary element of human intelligence and is essential to ground meaning. [126] [127] If this theory is appropriate, any fully functional brain design will require to incorporate more than just the neurons (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an option, but it is unknown whether this would be enough.
Philosophical perspective
"Strong AI" as specified in viewpoint
In 1980, thinker John Searle coined the term "strong AI" as part of his Chinese room argument. [128] He proposed a distinction in between two hypotheses about synthetic intelligence: [f]
Strong AI hypothesis: An artificial intelligence system can have "a mind" and "awareness". Weak AI hypothesis: A synthetic intelligence system can (only) act like it thinks and has a mind and awareness.
The very first one he called "strong" due to the fact that it makes a more powerful declaration: it presumes something unique has occurred to the machine that exceeds those capabilities that we can evaluate. The behaviour of a "weak AI" maker would be exactly similar to a "strong AI" machine, but the latter would also have subjective mindful experience. This use is also common in academic AI research study and textbooks. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil use the term "strong AI" to mean "human level artificial basic intelligence". [102] This is not the like Searle's strong AI, unless it is presumed that awareness is necessary for human-level AGI. Academic thinkers such as Searle do not think that is the case, and to most expert system researchers the concern is out-of-scope. [130]
Mainstream AI is most interested in how a program acts. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no need to understand if it actually has mind - indeed, there would be no chance to inform. For AI research, Searle's "weak AI hypothesis" is equivalent to the statement "artificial basic intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for approved, and don't care about the strong AI hypothesis." [130] Thus, for scholastic AI research study, "Strong AI" and "AGI" are 2 different things.
Consciousness
Consciousness can have numerous meanings, and some aspects play considerable roles in science fiction and the ethics of synthetic intelligence:
Sentience (or "incredible awareness"): The ability to "feel" perceptions or feelings subjectively, rather than the capability to factor about perceptions. Some philosophers, such as David Chalmers, utilize the term "awareness" to refer solely to incredible awareness, which is roughly equivalent to life. [132] Determining why and how subjective experience occurs is understood as the difficult problem of consciousness. [133] Thomas Nagel explained in 1974 that it "feels like" something to be conscious. If we are not conscious, then it doesn't seem like anything. Nagel utilizes the example of a bat: we can sensibly ask "what does it feel like to be a bat?" However, we are unlikely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat seems conscious (i.e., has consciousness) however a toaster does not. [134] In 2022, a Google engineer declared that the business's AI chatbot, LaMDA, had achieved life, though this claim was commonly disputed by other specialists. [135]
Self-awareness: To have conscious awareness of oneself as a separate person, particularly to be consciously familiar with one's own thoughts. This is opposed to merely being the "topic of one's thought"-an os or debugger is able to be "aware of itself" (that is, to represent itself in the same way it represents everything else)-however this is not what individuals usually mean when they utilize the term "self-awareness". [g]
These traits have an ethical measurement. AI life would offer increase to issues of well-being and legal protection, likewise to animals. [136] Other aspects of awareness related to cognitive abilities are also appropriate to the concept of AI rights. [137] Determining how to incorporate advanced AI with existing legal and social structures is an emerging problem. [138]
Benefits
AGI could have a wide range of applications. If oriented towards such goals, AGI might assist reduce various problems in the world such as cravings, poverty and illness. [139]
AGI might improve productivity and efficiency in the majority of jobs. For instance, in public health, AGI might accelerate medical research study, especially versus cancer. [140] It might look after the senior, [141] and democratize access to quick, high-quality medical diagnostics. It could provide enjoyable, inexpensive and individualized education. [141] The need to work to subsist could end up being obsolete if the wealth produced is correctly redistributed. [141] [142] This likewise raises the question of the location of human beings in a drastically automated society.
AGI could likewise help to make reasonable decisions, and to anticipate and avoid disasters. It could also assist to reap the benefits of potentially devastating innovations such as nanotechnology or climate engineering, while preventing the associated threats. [143] If an AGI's main objective is to prevent existential catastrophes such as human extinction (which could be hard if the Vulnerable World Hypothesis ends up being real), [144] it could take procedures to significantly lower the dangers [143] while reducing the effect of these measures on our quality of life.
Risks
Existential risks
AGI may represent multiple kinds of existential threat, which are dangers that threaten "the premature extinction of Earth-originating smart life or the long-term and drastic damage of its potential for preferable future advancement". [145] The risk of human termination from AGI has been the topic of numerous disputes, however there is also the possibility that the development of AGI would result in a completely flawed future. Notably, it could be used to spread and protect the set of worths of whoever develops it. If humankind still has moral blind areas comparable to slavery in the past, AGI might irreversibly entrench it, avoiding ethical progress. [146] Furthermore, AGI could assist in mass surveillance and brainwashing, which could be used to create a stable repressive worldwide totalitarian routine. [147] [148] There is likewise a threat for the machines themselves. If machines that are sentient or otherwise deserving of moral factor to consider are mass developed in the future, engaging in a civilizational path that forever overlooks their well-being and interests might be an existential disaster. [149] [150] Considering just how much AGI might enhance humanity's future and help in reducing other existential dangers, Toby Ord calls these existential risks "an argument for continuing with due care", not for "abandoning AI". [147]
Risk of loss of control and human extinction
The thesis that AI positions an existential danger for people, and that this risk needs more attention, is controversial but has been backed in 2023 by numerous public figures, AI researchers and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed widespread indifference:
So, facing possible futures of enormous advantages and threats, the specialists are surely doing everything possible to ensure the very best result, right? Wrong. If a superior alien civilisation sent us a message stating, 'We'll get here in a few decades,' would we just reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is taking place with AI. [153]
The prospective fate of mankind has actually in some cases been compared to the fate of gorillas threatened by human activities. The contrast specifies that higher intelligence enabled humankind to control gorillas, which are now vulnerable in manner ins which they might not have actually anticipated. As a result, the gorilla has actually become an endangered species, not out of malice, but just as a security damage from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to dominate humankind and that we must beware not to anthropomorphize them and translate their intents as we would for people. He said that people will not be "clever adequate to design super-intelligent devices, yet unbelievably stupid to the point of giving it moronic objectives without any safeguards". [155] On the other side, the principle of crucial convergence recommends that nearly whatever their goals, intelligent agents will have reasons to try to make it through and get more power as intermediary steps to accomplishing these objectives. And that this does not need having feelings. [156]
Many scholars who are concerned about existential threat advocate for more research study into resolving the "control issue" to address the concern: what kinds of safeguards, algorithms, or architectures can programmers implement to maximise the likelihood that their recursively-improving AI would continue to act in a friendly, rather than damaging, manner after it reaches superintelligence? [157] [158] Solving the control problem is made complex by the AI arms race (which might lead to a race to the bottom of security preventative measures in order to release products before rivals), [159] and using AI in weapon systems. [160]
The thesis that AI can present existential threat likewise has critics. Skeptics typically state that AGI is not likely in the short-term, or that concerns about AGI sidetrack from other concerns connected to present AI. [161] Former Google fraud czar Shuman Ghosemajumder thinks about that for lots of people outside of the technology market, existing chatbots and LLMs are currently perceived as though they were AGI, resulting in additional misconception and fear. [162]
Skeptics often charge that the thesis is crypto-religious, with an irrational belief in the possibility of superintelligence changing an irrational belief in a supreme God. [163] Some scientists think that the communication campaigns on AI existential threat by particular AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at attempt at regulatory capture and to pump up interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other market leaders and scientists, issued a joint statement asserting that "Mitigating the risk of extinction from AI ought to be an international concern alongside other societal-scale threats such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI estimated that "80% of the U.S. labor force might have at least 10% of their work tasks impacted by the introduction of LLMs, while around 19% of employees might see at least 50% of their jobs affected". [166] [167] They think about workplace workers to be the most exposed, for example mathematicians, accounting professionals or web designers. [167] AGI might have a better autonomy, ability to make decisions, to user interface with other computer tools, but also to manage robotized bodies.
According to Stephen Hawking, the outcome of automation on the lifestyle will depend upon how the wealth will be redistributed: [142]
Everyone can delight in a life of elegant leisure if the machine-produced wealth is shared, or many people can end up badly bad if the machine-owners successfully lobby versus wealth redistribution. Up until now, the trend appears to be toward the second choice, with innovation driving ever-increasing inequality
Elon Musk considers that the automation of society will require governments to adopt a universal standard earnings. [168]
See likewise
Artificial brain - Software and hardware with cognitive abilities comparable to those of the animal or human brain AI impact AI security - Research area on making AI safe and useful AI alignment - AI conformance to the designated goal A.I. Rising - 2018 movie directed by Lazar Bodroža Artificial intelligence Automated artificial intelligence - Process of automating the application of device knowing BRAIN Initiative - Collaborative public-private research study effort announced by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General game playing - Ability of synthetic intelligence to play different games Generative artificial intelligence - AI system efficient in generating content in action to prompts Human Brain Project - Scientific research project Intelligence amplification - Use of infotech to augment human intelligence (IA). Machine ethics - Moral behaviours of man-made makers. Moravec's paradox. Multi-task knowing - Solving multiple maker discovering tasks at the exact same time. Neural scaling law - Statistical law in artificial intelligence. Outline of expert system - Overview of and topical guide to artificial intelligence. Transhumanism - Philosophical movement. Synthetic intelligence - Alternate term for or kind of synthetic intelligence. Transfer learning - Machine knowing strategy. Loebner Prize - Annual AI competitors. Hardware for artificial intelligence - Hardware specifically designed and optimized for expert system. Weak expert system - Form of expert system.
Notes
^ a b See listed below for the origin of the term "strong AI", and see the academic definition of "strong AI" and weak AI in the post Chinese room. ^ AI founder John McCarthy writes: "we can not yet identify in general what sort of computational procedures we wish to call intelligent. " [26] (For a discussion of some meanings of intelligence used by synthetic intelligence researchers, see approach of expert system.). ^ The Lighthill report specifically slammed AI's "grand objectives" and led the taking apart of AI research in England. [55] In the U.S., DARPA ended up being identified to money just "mission-oriented direct research study, instead of basic undirected research study". [56] [57] ^ As AI founder John McCarthy writes "it would be a terrific relief to the rest of the workers in AI if the creators of brand-new general formalisms would reveal their hopes in a more protected kind than has in some cases been the case." [61] ^ In "Mind Children" [122] 1015 cps is used. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately correspond to 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As specified in a basic AI textbook: "The assertion that devices might perhaps act smartly (or, maybe better, act as if they were intelligent) is called the 'weak AI' hypothesis by thinkers, and the assertion that machines that do so are in fact thinking (instead of replicating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to perform a single task. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to make sure that artificial basic intelligence advantages all of humanity. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new goal is producing synthetic basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is much better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were determined as being active in 2020. ^ a b c "AI timelines: What do specialists in artificial intelligence anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton gives up Google and alerts of danger ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is hard to see how you can prevent the bad stars from using it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows stimulates of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you change modifications you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York City Times. The genuine danger is not AI itself however the way we deploy it. ^ "Impressed by synthetic intelligence? Experts state AGI is coming next, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could posture existential risks to humankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last development that humanity requires to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the risk of extinction from AI ought to be a worldwide top priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI professionals caution of risk of extinction from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from producing devices that can outthink us in basic ways. ^ LeCun, Yann (June 2023). "AGI does not present an existential danger". Medium. There is no reason to fear AI as an existential threat. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil explains strong AI as "machine intelligence with the complete variety of human intelligence.". ^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical symbol system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007. ^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Artificial intelligence is transforming our world - it is on all of us to make certain that it goes well". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent characteristics is based upon the topics covered by major AI textbooks, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body forms the method we think: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reassessed: The principle of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reassessed: The principle of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What occurs when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real boy - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists dispute whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not identify GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing whatever from the bar test to AP Biology. Here's a list of challenging exams both AI variations have passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is outdated. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested testing an AI chatbot's capability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 priced estimate in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), estimated in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, forum.batman.gainedge.org a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer researchers and software application engineers avoided the term expert system for worry of being seen as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of maker intelligence: macphersonwiki.mywikis.wiki Despite development in maker intelligence, artificial general intelligence is still a major challenge". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Expert system will not become a Frankenstein's monster". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why basic expert system will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us paradise or damage?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future development in expert system: A survey of expert viewpoint. In Fundamental concerns of artificial intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of devices: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards artificial general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the original on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as clever as Siri - however a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're going into the AI golden zone between narrow and general AI". VentureBeat. Archived from the original on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are currently seeing an early example of an AGI system in the recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the first example of an AGI system? This is debatable, but the agreement is that it is not AGI. ... If absolutely nothing else, GPT-3 tells us there is a happy medium between narrow and basic AI. ^ Quach, Katyanna. "A developer constructed an AI chatbot using GPT-3 that assisted a guy speak once again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can perform over 600 jobs, from playing games to managing robotics", TechCrunch, archived from the initial on 16 June 2022, retrieved 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and nerdgaming.science Warns of Danger Ahead". The New York City Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. might measure up to human intelligence in 'just a few years,' says CEO of Google's main A.I. research lab". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO says AI could pass human tests in five years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone seems to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study project maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A vast array of views in current research study, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How publishing our minds to a computer may end up being possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced estimate in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (priced quote in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for curiosity by the field about why a program acts the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who believes the company's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the cost surpass benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Benefit from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Appear Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: paths, threats, techniques (Reprinted with corrections 2017 ed.). Oxford, UK; New York City, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that humans will damage ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security danger' to Australia, Senate questions says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Expert System". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the implications of expert system - however are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The remarkable Facebook argument in between Yann LeCun, Stuart Russel and Yoshua Bengio about the threats of strong AI". The interesting Facebook argument between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI (in French). Retrieved 8 June 2023. ^ "Will Artificial Intelligence Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to disastrous AGI threat: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race threats spiralling out of control, report alerts". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over danger posed but artificial intelligence can not be disregarded". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, users.atw.hu Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the original on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stoking worries over AI, warn researchers". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain creator says big tech is lying about AI termination danger". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early appearance at the labor market effect potential of big language designs". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI says 80% of workers might see their tasks impacted by AI. These are the jobs most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we require universal basic income because 'in the future, manual labor will be an option'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Expert System. New York, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level synthetic basic intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's review of Kurzweil", Expert system, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, recovered 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, recovered 7 May 2011. Howe, J. (November 1994), Expert System at Edinburgh University: a Perspective, archived from the initial on 17 August 2007, recovered 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Expert System: a paper seminar, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (5th ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The ultimate effort is to make computer system programs that can resolve issues and attain objectives in the world as well as human beings. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will computer hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the initial on 15 June 2006, recovered 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, recovered 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the original on 12 January 2008, recovered 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Rational Approach, New York City: Oxford University Press, archived from the initial on 25 July 2009, retrieved 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the original on 25 March 2020, obtained 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the initial on 17 March 2019, retrieved 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - via ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, retrieved 4 September 2013 - via ResearchGate Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, recovered 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think about the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what may be called "Dyson's Law") that "Any system easy sufficient to be understandable will not be made complex enough to act smartly, yogicentral.science while any system complicated enough to act wisely will be too complicated to understand." (p. 197.) Computer researcher Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead basic stupid. They work, but they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, recovered 25 July 2010. Gleick, James, "The Fate of Free Choice" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York City Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what identifies us from machines. For biological creatures, factor and purpose come from acting on the planet and experiencing the repercussions. Expert systems - disembodied, complete strangers to blood, sweat, and tears - have no occasion for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the initial (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably expect that those who want to get rich from AI are going to have the interests of the rest of us close at heart,' ... writes [Gary Marcus] 'We can't rely on federal governments driven by project financing contributions [from tech companies] to push back.' ... Marcus information the needs that people should make from their federal governments and the tech companies. They consist of transparency on how AI systems work; compensation for people if their data [are] utilized to train LLMs (big language design) s and the right to authorization to this usage; and the ability to hold tech companies liable for the damages they trigger by removing Section 230, imposing cash penalites, and passing stricter product liability laws ... Marcus likewise recommends ... that a new, AI-specific federal company, similar to the FDA, the FCC, or the FTC, may offer the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... recommends ... develop [ing] an expert licensing regime for engineers that would function in a comparable way to medical licenses, malpractice fits, and the Hippocratic oath in medication. 'What if, like medical professionals,' she asks ..., 'AI engineers also vowed to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in synthetic intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has stumped people for decades, reveals the limitations of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competitors has exposed that although NLP (natural-language processing) designs are capable of extraordinary tasks, their abilities are quite restricted by the amount of context they receive. This [...] could cause [troubles] for scientists who intend to utilize them to do things such as evaluate ancient languages. In some cases, there are couple of historic records on long-gone civilizations to work as training information for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to produce phony videos identical from real ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we mean realistic videos produced utilizing synthetic intelligence that really deceive people, garagesale.es then they hardly exist. The phonies aren't deep, and the deeps aren't fake. [...] A.I.-generated videos are not, in general, running in our media as counterfeited proof. Their function much better looks like that of cartoons, particularly smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We need to avoid humanizing machine-learning designs used in scientific research", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a maker a conversation?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the most recent, buzziest systems of synthetic general intelligence are stymmied by the very same old problems", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the original on 3 March 2016, obtained 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, provided and distributed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead authorities to disregard contradictory evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test but showed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at jobs that need real humanlike reasoning or an understanding of the physical and social world ... ChatGPT appeared not able to reason realistically and attempted to depend on its large database of ... truths stemmed from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI innovations are effective however unreliable. Rules-based systems can not deal with circumstances their developers did not prepare for. Learning systems are limited by the data on which they were trained. AI failures have already led to disaster. Advanced autopilot features in vehicles, although they perform well in some circumstances, have actually driven vehicles without warning into trucks, concrete barriers, and parked automobiles. In the incorrect circumstance, AI systems go from supersmart to superdumb in an instant. When an opponent is attempting to manipulate and hack an AI system, the dangers are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are enabled by brand-new innovations however depend on the timelelss human tendency to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.