Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
  • D duniareligi
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 1
    • Issues 1
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • Value stream
    • CI/CD
    • Repository
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • Eartha Clow
  • duniareligi
  • Issues
  • #1

Closed
Open
Created May 29, 2025 by Eartha Clow@earthaclow5147Maintainer

The Verge Stated It's Technologically Impressive


Announced in 2016, Gym is an open-source Python library developed to help with the advancement of support learning algorithms. It aimed to standardize how environments are defined in AI research, making released research more easily reproducible [24] [144] while providing users with a simple interface for connecting with these environments. In 2022, brand-new developments of Gym have actually been moved to the library Gymnasium. [145] [146]
Gym Retro

Released in 2018, Gym Retro is a platform for support knowing (RL) research on computer game [147] using RL algorithms and research study generalization. Prior RL research study focused mainly on enhancing agents to fix . Gym Retro offers the capability to generalize between games with comparable concepts however different looks.

RoboSumo

Released in 2017, RoboSumo is a virtual world where humanoid metalearning robot agents at first lack knowledge of how to even walk, however are provided the objectives of learning to move and to push the opposing representative out of the ring. [148] Through this adversarial knowing procedure, systemcheck-wiki.de the agents learn how to adjust to altering conditions. When a representative is then gotten rid of from this virtual environment and put in a brand-new virtual environment with high winds, the representative braces to remain upright, suggesting it had actually found out how to balance in a generalized way. [148] [149] OpenAI's Igor Mordatch argued that competition between representatives could develop an intelligence "arms race" that might increase a representative's capability to function even outside the context of the competition. [148]
OpenAI 5

OpenAI Five is a group of 5 OpenAI-curated bots utilized in the competitive five-on-five video game Dota 2, that discover to play against human players at a high ability level entirely through experimental algorithms. Before becoming a team of 5, the first public presentation happened at The International 2017, the annual premiere championship competition for the video game, where Dendi, an expert Ukrainian player, lost against a bot in a live individually match. [150] [151] After the match, CTO Greg Brockman explained that the bot had actually found out by playing against itself for 2 weeks of genuine time, and that the learning software was a step in the direction of creating software that can deal with intricate jobs like a surgeon. [152] [153] The system uses a kind of reinforcement knowing, as the bots learn gradually by playing against themselves numerous times a day for months, and are rewarded for actions such as killing an opponent and taking map goals. [154] [155] [156]
By June 2018, the ability of the bots expanded to play together as a complete team of 5, and they were able to beat groups of amateur and semi-professional players. [157] [154] [158] [159] At The International 2018, OpenAI Five played in two exhibit matches against professional players, however wound up losing both video games. [160] [161] [162] In April 2019, OpenAI Five defeated OG, the ruling world champions of the game at the time, wavedream.wiki 2:0 in a live exhibition match in San Francisco. [163] [164] The bots' last public look came later that month, where they played in 42,729 overall games in a four-day open online competition, winning 99.4% of those games. [165]
OpenAI 5's systems in Dota 2's bot gamer shows the challenges of AI systems in multiplayer online fight arena (MOBA) video games and how OpenAI Five has actually shown the usage of deep reinforcement learning (DRL) agents to attain superhuman skills in Dota 2 matches. [166]
Dactyl

Developed in 2018, Dactyl uses machine learning to train a Shadow Hand, a human-like robotic hand, to control physical things. [167] It learns entirely in simulation using the exact same RL algorithms and training code as OpenAI Five. OpenAI dealt with the object orientation problem by utilizing domain randomization, a simulation technique which exposes the student to a range of experiences instead of trying to fit to reality. The set-up for Dactyl, aside from having motion tracking video cameras, also has RGB electronic cameras to allow the robotic to control an arbitrary item by seeing it. In 2018, OpenAI revealed that the system was able to manipulate a cube and an octagonal prism. [168]
In 2019, OpenAI demonstrated that Dactyl could fix a Rubik's Cube. The robotic was able to resolve the puzzle 60% of the time. Objects like the Rubik's Cube introduce complex physics that is harder to design. OpenAI did this by enhancing the robustness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation method of creating gradually harder environments. ADR varies from manual domain randomization by not needing a human to define randomization ranges. [169]
API

In June 2020, OpenAI announced a multi-purpose API which it said was "for accessing new AI models developed by OpenAI" to let designers contact it for "any English language AI task". [170] [171]
Text generation

The business has actually promoted generative pretrained transformers (GPT). [172]
OpenAI's original GPT model ("GPT-1")

The original paper on generative pre-training of a transformer-based language model was composed by Alec Radford and his colleagues, and released in preprint on OpenAI's site on June 11, 2018. [173] It demonstrated how a generative design of language might obtain world knowledge and process long-range reliances by pre-training on a diverse corpus with long stretches of contiguous text.

GPT-2

Generative Pre-trained Transformer 2 ("GPT-2") is a not being watched transformer language model and the successor to OpenAI's initial GPT model ("GPT-1"). GPT-2 was announced in February 2019, with just limited demonstrative variations at first launched to the public. The full variation of GPT-2 was not right away launched due to concern about possible misuse, consisting of applications for writing phony news. [174] Some specialists expressed uncertainty that GPT-2 presented a significant hazard.

In reaction to GPT-2, the Allen Institute for Artificial Intelligence reacted with a tool to find "neural phony news". [175] Other scientists, systemcheck-wiki.de such as Jeremy Howard, alerted of "the technology to absolutely fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would muffle all other speech and be difficult to filter". [176] In November 2019, OpenAI released the complete version of the GPT-2 language design. [177] Several websites host interactive presentations of various circumstances of GPT-2 and other transformer designs. [178] [179] [180]
GPT-2's authors argue without supervision language designs to be general-purpose learners, shown by GPT-2 attaining modern accuracy and perplexity on 7 of 8 zero-shot tasks (i.e. the model was not additional trained on any task-specific input-output examples).

The corpus it was trained on, called WebText, contains a little 40 gigabytes of text from URLs shared in Reddit submissions with at least 3 upvotes. It prevents certain concerns encoding vocabulary with word tokens by using byte pair encoding. This allows representing any string of characters by encoding both private characters and multiple-character tokens. [181]
GPT-3

First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is an unsupervised transformer language design and the successor to GPT-2. [182] [183] [184] OpenAI stated that the full version of GPT-3 contained 175 billion criteria, [184] 2 orders of magnitude bigger than the 1.5 billion [185] in the complete variation of GPT-2 (although GPT-3 designs with as couple of as 125 million criteria were also trained). [186]
OpenAI stated that GPT-3 prospered at certain "meta-learning" tasks and could generalize the purpose of a single input-output pair. The GPT-3 release paper gave examples of translation and cross-linguistic transfer learning between English and Romanian, and between English and German. [184]
GPT-3 drastically enhanced benchmark outcomes over GPT-2. OpenAI cautioned that such scaling-up of language models could be approaching or experiencing the basic ability constraints of predictive language designs. [187] Pre-training GPT-3 required a number of thousand petaflop/s-days [b] of compute, compared to tens of petaflop/s-days for the complete GPT-2 model. [184] Like its predecessor, [174] the GPT-3 trained design was not instantly released to the general public for concerns of possible abuse, although OpenAI prepared to enable gain access to through a paid cloud API after a two-month free private beta that began in June 2020. [170] [189]
On September 23, 2020, GPT-3 was certified solely to Microsoft. [190] [191]
Codex

Announced in mid-2021, Codex is a descendant of GPT-3 that has furthermore been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was launched in private beta. [194] According to OpenAI, the model can develop working code in over a dozen shows languages, most effectively in Python. [192]
Several problems with glitches, design flaws and security vulnerabilities were cited. [195] [196]
GitHub Copilot has been accused of producing copyrighted code, without any author attribution or license. [197]
OpenAI announced that they would discontinue assistance for Codex API on March 23, 2023. [198]
GPT-4

On March 14, 2023, OpenAI announced the release of Generative Pre-trained Transformer 4 (GPT-4), efficient in accepting text or image inputs. [199] They announced that the updated innovation passed a simulated law school bar test with a score around the leading 10% of test takers. (By contrast, setiathome.berkeley.edu GPT-3.5 scored around the bottom 10%.) They said that GPT-4 might also read, analyze or generate up to 25,000 words of text, and write code in all significant shows languages. [200]
Observers reported that the version of ChatGPT using GPT-4 was an improvement on the previous GPT-3.5-based version, with the caution that GPT-4 retained a few of the issues with earlier revisions. [201] GPT-4 is also efficient in taking images as input on ChatGPT. [202] OpenAI has declined to reveal various technical details and stats about GPT-4, such as the exact size of the model. [203]
GPT-4o

On May 13, 2024, OpenAI revealed and released GPT-4o, which can process and generate text, images and audio. [204] GPT-4o attained cutting edge lead to voice, multilingual, and vision criteria, setting brand-new records in audio speech recognition and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) standard compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI launched GPT-4o mini, a smaller sized version of GPT-4o replacing GPT-3.5 Turbo on the ChatGPT user interface. Its API costs $0.15 per million input tokens and systemcheck-wiki.de $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI anticipates it to be especially beneficial for enterprises, start-ups and designers seeking to automate services with AI agents. [208]
o1

On September 12, 2024, OpenAI released the o1-preview and o1-mini models, which have been created to take more time to believe about their actions, leading to higher precision. These models are especially effective in science, coding, and thinking tasks, and were made available to ChatGPT Plus and Staff member. [209] [210] In December 2024, o1-preview was replaced by o1. [211]
o3

On December 20, 2024, OpenAI revealed o3, the successor of the o1 reasoning model. OpenAI also unveiled o3-mini, a lighter and faster variation of OpenAI o3. Since December 21, 2024, this design is not available for public use. According to OpenAI, they are checking o3 and o3-mini. [212] [213] Until January 10, 2025, security and security scientists had the chance to obtain early access to these models. [214] The model is called o3 rather than o2 to prevent confusion with telecoms providers O2. [215]
Deep research

Deep research is a representative established by OpenAI, revealed on February 2, 2025. It leverages the abilities of OpenAI's o3 model to carry out extensive web browsing, data analysis, and synthesis, providing detailed reports within a timeframe of 5 to 30 minutes. [216] With searching and Python tools enabled, it reached a precision of 26.6 percent on HLE (Humanity's Last Exam) criteria. [120]
Image category

CLIP

Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a design that is trained to analyze the semantic resemblance in between text and images. It can especially be utilized for image category. [217]
Text-to-image

DALL-E

Revealed in 2021, DALL-E is a Transformer design that creates images from textual descriptions. [218] DALL-E utilizes a 12-billion-parameter version of GPT-3 to interpret natural language inputs (such as "a green leather handbag shaped like a pentagon" or "an isometric view of an unfortunate capybara") and generate corresponding images. It can produce pictures of sensible things ("a stained-glass window with an image of a blue strawberry") along with items that do not exist in reality ("a cube with the texture of a porcupine"). As of March 2021, no API or code is available.

DALL-E 2

In April 2022, OpenAI announced DALL-E 2, an updated version of the design with more practical results. [219] In December 2022, OpenAI released on GitHub software for Point-E, a new basic system for transforming a text description into a 3-dimensional model. [220]
DALL-E 3

In September 2023, OpenAI revealed DALL-E 3, a more effective design much better able to create images from intricate descriptions without manual timely engineering and render intricate details like hands and text. [221] It was released to the general public as a ChatGPT Plus feature in October. [222]
Text-to-video

Sora

Sora is a text-to-video model that can create videos based on short detailed triggers [223] in addition to extend existing videos forwards or backwards in time. [224] It can create videos with resolution up to 1920x1080 or 1080x1920. The maximal length of generated videos is unidentified.

Sora's advancement team called it after the Japanese word for "sky", to symbolize its "endless creative potential". [223] Sora's innovation is an adjustment of the technology behind the DALL · E 3 text-to-image design. [225] OpenAI trained the system utilizing publicly-available videos as well as copyrighted videos accredited for that function, however did not expose the number or the specific sources of the videos. [223]
OpenAI demonstrated some Sora-created high-definition videos to the general public on February 15, 2024, specifying that it could generate videos as much as one minute long. It likewise shared a technical report highlighting the techniques used to train the design, it-viking.ch and the design's abilities. [225] It acknowledged some of its imperfections, consisting of struggles simulating complex physics. [226] Will Douglas Heaven of the MIT Technology Review called the presentation videos "impressive", but noted that they should have been cherry-picked and might not represent Sora's normal output. [225]
Despite uncertainty from some academic leaders following Sora's public demo, notable entertainment-industry figures have shown significant interest in the technology's potential. In an interview, actor/filmmaker Tyler Perry revealed his awe at the innovation's ability to produce realistic video from text descriptions, mentioning its prospective to transform storytelling and material development. He said that his excitement about Sora's possibilities was so strong that he had actually chosen to stop briefly prepare for expanding his Atlanta-based film studio. [227]
Speech-to-text

Whisper

Released in 2022, Whisper is a general-purpose speech recognition model. [228] It is trained on a large dataset of diverse audio and is also a multi-task design that can perform multilingual speech recognition along with speech translation and language identification. [229]
Music generation

MuseNet

Released in 2019, MuseNet is a deep neural net trained to predict subsequent musical notes in MIDI music files. It can generate songs with 10 instruments in 15 styles. According to The Verge, a tune produced by MuseNet tends to start fairly however then fall into mayhem the longer it plays. [230] [231] In pop culture, initial applications of this tool were utilized as early as 2020 for bytes-the-dust.com the internet psychological thriller Ben Drowned to develop music for the titular character. [232] [233]
Jukebox

Released in 2020, Jukebox is an open-sourced algorithm to produce music with vocals. After training on 1.2 million samples, the system accepts a genre, artist, and a bit of lyrics and outputs tune samples. OpenAI stated the songs "show regional musical coherence [and] follow standard chord patterns" but acknowledged that the tunes lack "familiar bigger musical structures such as choruses that repeat" and that "there is a considerable gap" in between Jukebox and human-generated music. The Verge mentioned "It's technically remarkable, even if the outcomes sound like mushy versions of songs that may feel familiar", while Business Insider mentioned "surprisingly, a few of the resulting songs are memorable and sound legitimate". [234] [235] [236]
User interfaces

Debate Game

In 2018, OpenAI launched the Debate Game, which teaches makers to discuss toy issues in front of a human judge. The function is to research whether such an approach may help in auditing AI choices and in establishing explainable AI. [237] [238]
Microscope

Released in 2020, Microscope [239] is a collection of visualizations of every substantial layer and nerve cell of 8 neural network models which are often studied in interpretability. [240] Microscope was produced to evaluate the functions that form inside these neural networks easily. The models consisted of are AlexNet, VGG-19, different variations of Inception, and different variations of CLIP Resnet. [241]
ChatGPT

Launched in November 2022, ChatGPT is an artificial intelligence tool constructed on top of GPT-3 that provides a conversational interface that allows users to ask concerns in natural language. The system then responds with an answer within seconds.

Assignee
Assign to
Time tracking