Artificial General Intelligence
Artificial general intelligence (AGI) is a kind of synthetic intelligence (AI) that matches or goes beyond human cognitive abilities across a wide variety of cognitive tasks. This contrasts with narrow AI, which is restricted to specific tasks. [1] Artificial superintelligence (ASI), surgiteams.com on the other hand, refers to AGI that considerably exceeds human cognitive abilities. AGI is thought about one of the definitions of strong AI.
Creating AGI is a main goal of AI research study and of companies such as OpenAI [2] and Meta. [3] A 2020 survey recognized 72 active AGI research and development tasks across 37 countries. [4]
The timeline for achieving AGI remains a topic of ongoing argument among researchers and professionals. As of 2023, some argue that it may be possible in years or years; others maintain it might take a century or longer; a minority think it might never be achieved; and another minority claims that it is already here. [5] [6] Notable AI scientist Geoffrey Hinton has actually expressed issues about the quick progress towards AGI, suggesting it could be achieved sooner than lots of anticipate. [7]
There is dispute on the specific definition of AGI and regarding whether modern-day big language designs (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a typical subject in science fiction and futures studies. [9] [10]
Contention exists over whether AGI represents an existential threat. [11] [12] [13] Many specialists on AI have actually mentioned that reducing the danger of human termination posed by AGI needs to be a worldwide priority. [14] [15] Others discover the development of AGI to be too remote to present such a danger. [16] [17]
Terminology
AGI is also understood as strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level smart AI, or basic intelligent action. [21]
Some scholastic sources book the term "strong AI" for computer system programs that experience sentience or awareness. [a] In contrast, weak AI (or narrow AI) has the ability to solve one specific problem however does not have general cognitive capabilities. [22] [19] Some scholastic sources use "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the exact same sense as humans. [a]
Related ideas consist of artificial superintelligence and transformative AI. An artificial superintelligence (ASI) is a theoretical kind of AGI that is a lot more usually intelligent than humans, [23] while the concept of transformative AI associates with AI having a big effect on society, for instance, similar to the agricultural or industrial transformation. [24]
A structure for classifying AGI in levels was proposed in 2023 by Google DeepMind scientists. They define five levels of AGI: emerging, skilled, specialist, virtuoso, and superhuman. For example, a proficient AGI is specified as an AI that surpasses 50% of competent adults in a vast array of non-physical tasks, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise defined but with a threshold of 100%. They think about big language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have actually been proposed. Among the leading proposals is the Turing test. However, there are other widely known definitions, and some scientists disagree with the more popular methods. [b]
Intelligence characteristics
Researchers usually hold that intelligence is required to do all of the following: [27]
factor, usage technique, fix puzzles, chessdatabase.science and make judgments under unpredictability
represent understanding, consisting of typical sense understanding
plan
find out
- interact in natural language
- if necessary, integrate these abilities in completion of any provided objective
Many interdisciplinary techniques (e.g. cognitive science, computational intelligence, and choice making) think about additional qualities such as imagination (the ability to form unique psychological images and ideas) [28] and autonomy. [29]
Computer-based systems that display a lot of these capabilities exist (e.g. see computational imagination, automated thinking, choice support group, robot, evolutionary calculation, intelligent agent). There is debate about whether modern AI systems possess them to a sufficient degree.
Physical traits
Other capabilities are considered desirable in intelligent systems, as they might affect intelligence or aid in its expression. These consist of: [30]
- the capability to sense (e.g. see, hear, and so on), and - the ability to act (e.g. relocation and control items, modification place to explore, and so on).
This consists of the ability to detect and react to threat. [31]
Although the capability to sense (e.g. see, hear, etc) and the capability to act (e.g. relocation and manipulate items, change place to explore, etc) can be preferable for some smart systems, [30] these physical capabilities are not strictly needed for an entity to certify as AGI-particularly under the thesis that big language models (LLMs) may currently be or become AGI. Even from a less positive perspective on LLMs, there is no firm requirement for an AGI to have a human-like type; being a silicon-based computational system is sufficient, provided it can process input (language) from the external world in location of human senses. This interpretation aligns with the understanding that AGI has never been proscribed a particular physical personification and therefore does not demand a capability for mobility or traditional "eyes and ears". [32]
Tests for human-level AGI
Several tests suggested to validate human-level AGI have actually been thought about, including: [33] [34]
The idea of the test is that the device has to try and pretend to be a man, by responding to concerns put to it, and it will only pass if the pretence is fairly convincing. A considerable part of a jury, who need to not be skilled about machines, must be taken in by the pretence. [37]
AI-complete problems
A problem is informally called "AI-complete" or "AI-hard" if it is believed that in order to fix it, one would require to execute AGI, because the option is beyond the abilities of a purpose-specific algorithm. [47]
There are many issues that have been conjectured to need general intelligence to solve along with human beings. Examples include computer vision, natural language understanding, and dealing with unanticipated situations while fixing any real-world problem. [48] Even a particular task like translation needs a maker to check out and write in both languages, follow the author's argument (reason), comprehend the context (understanding), photorum.eclat-mauve.fr and faithfully recreate the author's original intent (social intelligence). All of these problems require to be solved concurrently in order to reach human-level device performance.
However, many of these jobs can now be performed by contemporary big language designs. According to Stanford University's 2024 AI index, AI has reached human-level efficiency on lots of criteria for checking out comprehension and visual thinking. [49]
History
Classical AI
Modern AI research began in the mid-1950s. [50] The first generation of AI researchers were convinced that artificial basic intelligence was possible and akropolistravel.com that it would exist in simply a couple of decades. [51] AI leader Herbert A. Simon composed in 1965: "devices will be capable, within twenty years, of doing any work a guy can do." [52]
Their forecasts were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers believed they might develop by the year 2001. AI pioneer Marvin Minsky was a specialist [53] on the job of making HAL 9000 as realistic as possible according to the agreement forecasts of the time. He said in 1967, "Within a generation ... the problem of producing 'expert system' will significantly be fixed". [54]
Several classical AI jobs, such as Doug Lenat's Cyc job (that began in 1984), and Allen Newell's Soar project, were directed at AGI.
However, in the early 1970s, it ended up being apparent that researchers had actually grossly ignored the difficulty of the job. Funding companies ended up being skeptical of AGI and put researchers under increasing pressure to produce helpful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that included AGI goals like "continue a casual discussion". [58] In response to this and the success of expert systems, both industry and federal government pumped money into the field. [56] [59] However, self-confidence in AI spectacularly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never satisfied. [60] For the second time in twenty years, AI scientists who forecasted the imminent accomplishment of AGI had been misinterpreted. By the 1990s, AI scientists had a reputation for making vain guarantees. They ended up being unwilling to make forecasts at all [d] and avoided reference of "human level" expert system for worry of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research study
In the 1990s and early 21st century, mainstream AI attained industrial success and scholastic respectability by focusing on specific sub-problems where AI can produce proven results and commercial applications, such as speech acknowledgment and recommendation algorithms. [63] These "applied AI" systems are now utilized extensively throughout the technology market, and research study in this vein is heavily funded in both academic community and industry. Since 2018 [upgrade], development in this field was thought about an emerging pattern, and a fully grown stage was expected to be reached in more than 10 years. [64]
At the turn of the century, many traditional AI researchers [65] hoped that strong AI could be established by combining programs that resolve numerous sub-problems. Hans Moravec wrote in 1988:
I am confident that this bottom-up path to expert system will one day meet the traditional top-down route majority method, prepared to offer the real-world skills and the commonsense knowledge that has been so frustratingly elusive in thinking programs. Fully smart machines will result when the metaphorical golden spike is driven unifying the two efforts. [65]
However, even at the time, this was disputed. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by specifying:
The expectation has typically been voiced that "top-down" (symbolic) approaches to modeling cognition will somehow satisfy "bottom-up" (sensory) approaches someplace in between. If the grounding factors to consider in this paper are legitimate, then this expectation is hopelessly modular and there is really only one viable route from sense to symbols: from the ground up. A free-floating symbolic level like the software level of a computer will never ever be reached by this path (or vice versa) - nor is it clear why we should even try to reach such a level, given that it appears arriving would just amount to uprooting our symbols from their intrinsic meanings (therefore merely lowering ourselves to the functional equivalent of a programmable computer). [66]
Modern artificial general intelligence research study
The term "synthetic general intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a discussion of the implications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative maximises "the capability to satisfy objectives in a large range of environments". [68] This kind of AGI, identified by the ability to maximise a mathematical meaning of intelligence rather than show human-like behaviour, [69] was likewise called universal expert system. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and initial outcomes". The very first summertime school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was offered in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, arranged by Lex Fridman and including a number of guest lecturers.
Since 2023 [update], a little number of computer system researchers are active in AGI research study, and many contribute to a series of AGI conferences. However, increasingly more scientists have an interest in open-ended learning, [76] [77] which is the concept of allowing AI to continuously discover and innovate like people do.
Feasibility
Since 2023, the advancement and prospective achievement of AGI stays a subject of extreme argument within the AI neighborhood. While traditional agreement held that AGI was a distant objective, recent developments have actually led some researchers and market figures to declare that early kinds of AGI may currently exist. [78] AI pioneer Herbert A. Simon speculated in 1965 that "devices will be capable, within twenty years, of doing any work a guy can do". This forecast stopped working to come true. Microsoft co-founder Paul Allen thought that such intelligence is unlikely in the 21st century due to the fact that it would need "unforeseeable and wiki-tb-service.com fundamentally unforeseeable advancements" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf between modern computing and human-level artificial intelligence is as broad as the gulf between present area flight and practical faster-than-light spaceflight. [80]
A further difficulty is the lack of clearness in specifying what intelligence requires. Does it need awareness? Must it display the capability to set objectives along with pursue them? Is it purely a matter of scale such that if design sizes increase adequately, intelligence will emerge? Are facilities such as planning, reasoning, and causal understanding needed? Does intelligence need clearly reproducing the brain and its specific faculties? Does it require emotions? [81]
Most AI scientists think strong AI can be attained in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of attaining strong AI. [82] [83] John McCarthy is amongst those who think human-level AI will be accomplished, however that the present level of development is such that a date can not accurately be anticipated. [84] AI experts' views on the feasibility of AGI wax and subside. Four polls performed in 2012 and 2013 suggested that the typical price quote amongst professionals for when they would be 50% positive AGI would show up was 2040 to 2050, depending on the poll, with the mean being 2081. Of the professionals, 16.5% addressed with "never" when asked the very same question but with a 90% confidence instead. [85] [86] Further current AGI progress factors to consider can be discovered above Tests for validating human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year time frame there is a strong bias towards anticipating the arrival of human-level AI as between 15 and 25 years from the time the forecast was made". They evaluated 95 predictions made in between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft scientists released a detailed examination of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, our company believe that it could fairly be deemed an early (yet still insufficient) variation of a synthetic general intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 outshines 99% of people on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a significant level of basic intelligence has currently been attained with frontier models. They wrote that reluctance to this view comes from 4 primary reasons: a "healthy skepticism about metrics for AGI", an "ideological commitment to alternative AI theories or strategies", a "devotion to human (or biological) exceptionalism", or a "issue about the financial implications of AGI". [91]
2023 also marked the development of large multimodal models (big language models capable of processing or producing multiple modalities such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the very first of a series of designs that "invest more time thinking before they react". According to Mira Murati, this ability to believe before reacting represents a new, extra paradigm. It enhances model outputs by investing more computing power when producing the response, whereas the model scaling paradigm enhances outputs by increasing the design size, training data and training calculate power. [93] [94]
An OpenAI staff member, Vahid Kazemi, declared in 2024 that the company had actually attained AGI, specifying, "In my opinion, we have actually already achieved AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any task", it is "better than most people at a lot of jobs." He also addressed criticisms that large language designs (LLMs) merely follow predefined patterns, comparing their learning process to the scientific method of observing, hypothesizing, and validating. These declarations have triggered debate, as they count on a broad and unconventional meaning of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's designs demonstrate exceptional adaptability, they might not completely meet this standard. Notably, Kazemi's comments came soon after OpenAI got rid of "AGI" from the regards to its partnership with Microsoft, triggering speculation about the business's tactical intentions. [95]
Timescales
Progress in expert system has traditionally gone through periods of quick progress separated by periods when progress appeared to stop. [82] Ending each hiatus were essential advances in hardware, software or both to create space for additional development. [82] [98] [99] For instance, the computer system hardware available in the twentieth century was not sufficient to execute deep knowing, which requires great deals of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel states that quotes of the time required before a genuinely flexible AGI is built differ from ten years to over a century. Since 2007 [upgrade], the agreement in the AGI research neighborhood seemed to be that the timeline discussed by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was possible. [103] Mainstream AI scientists have actually given a large range of opinions on whether progress will be this rapid. A 2012 meta-analysis of 95 such viewpoints discovered a predisposition towards predicting that the onset of AGI would occur within 16-26 years for contemporary and historical predictions alike. That paper has actually been criticized for how it classified opinions as specialist or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competition with a top-5 test mistake rate of 15.3%, considerably better than the second-best entry's rate of 26.3% (the traditional approach used a weighted sum of ratings from different pre-defined classifiers). [105] AlexNet was considered the initial ground-breaker of the present deep learning wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu carried out intelligence tests on publicly offered and easily available weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ worth of about 47, which corresponds approximately to a six-year-old child in first grade. An adult pertains to about 100 on average. Similar tests were brought out in 2014, with the IQ score reaching a maximum worth of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language model efficient in carrying out many varied jobs without specific training. According to Gary Grossman in a VentureBeat short article, while there is agreement that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be categorized as a narrow AI system. [108]
In the very same year, Jason Rohrer utilized his GPT-3 account to establish a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI requested for modifications to the chatbot to adhere to their security standards; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system capable of performing more than 600 different tasks. [110]
In 2023, Microsoft Research released a research study on an early version of OpenAI's GPT-4, contending that it showed more basic intelligence than previous AI models and showed human-level performance in tasks covering several domains, such as mathematics, coding, and law. This research study sparked an argument on whether GPT-4 might be considered an early, insufficient variation of artificial general intelligence, highlighting the need for additional expedition and examination of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton specified that: [112]
The idea that this things could in fact get smarter than people - a couple of individuals believed that, [...] But the majority of people believed it was way off. And I believed it was method off. I believed it was 30 to 50 years and even longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis likewise stated that "The development in the last few years has actually been pretty amazing", and that he sees no reason that it would decrease, expecting AGI within a years or even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within 5 years, AI would be capable of passing any test at least along with human beings. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a previous OpenAI employee, approximated AGI by 2027 to be "noticeably plausible". [115]
Whole brain emulation
While the development of transformer designs like in ChatGPT is considered the most promising course to AGI, [116] [117] whole brain emulation can act as an alternative method. With entire brain simulation, a brain model is built by scanning and mapping a biological brain in information, and after that copying and imitating it on a computer system or another computational device. The simulation design must be adequately faithful to the initial, so that it acts in virtually the exact same method as the original brain. [118] Whole brain emulation is a kind of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research study purposes. It has actually been discussed in synthetic intelligence research [103] as a technique to strong AI. Neuroimaging innovations that might deliver the essential comprehensive understanding are enhancing rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of enough quality will become available on a comparable timescale to the computing power needed to replicate it.
Early estimates
For low-level brain simulation, a really powerful cluster of computer systems or GPUs would be required, offered the enormous quantity of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on average 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number declines with age, stabilizing by their adult years. Estimates vary for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based on a simple switch model for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at various estimates for the hardware required to equate to the human brain and adopted a figure of 1016 calculations per second (cps). [e] (For contrast, if a "computation" was equivalent to one "floating-point operation" - a procedure used to rate existing supercomputers - then 1016 "computations" would be equivalent to 10 petaFLOPS, attained in 2011, while 1018 was attained in 2022.) He utilized this figure to forecast the essential hardware would be offered sometime in between 2015 and 2025, if the rapid growth in computer system power at the time of composing continued.
Current research study
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has established an especially in-depth and openly available atlas of the human brain. [124] In 2023, researchers from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based approaches
The artificial nerve cell design presumed by Kurzweil and used in numerous current artificial neural network executions is simple compared to biological neurons. A brain simulation would likely need to catch the comprehensive cellular behaviour of biological neurons, currently comprehended just in broad overview. The overhead introduced by complete modeling of the biological, chemical, and physical information of neural behaviour (specifically on a molecular scale) would require computational powers numerous orders of magnitude larger than Kurzweil's quote. In addition, the estimates do not represent glial cells, which are known to play a function in cognitive procedures. [125]
A fundamental criticism of the simulated brain approach obtains from embodied cognition theory which asserts that human embodiment is an essential element of human intelligence and is essential to ground meaning. [126] [127] If this theory is right, any fully functional brain design will require to include more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as a choice, however it is unidentified whether this would suffice.
Philosophical viewpoint
"Strong AI" as defined in viewpoint
In 1980, philosopher John Searle created the term "strong AI" as part of his Chinese space argument. [128] He proposed a difference between 2 hypotheses about synthetic intelligence: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "awareness". Weak AI hypothesis: An artificial intelligence system can (only) act like it believes and has a mind and consciousness.
The first one he called "strong" because it makes a stronger statement: it presumes something special has taken place to the maker that exceeds those capabilities that we can check. The behaviour of a "weak AI" maker would be specifically identical to a "strong AI" device, but the latter would also have subjective conscious experience. This use is likewise common in scholastic AI research study and books. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to mean "human level artificial basic intelligence". [102] This is not the very same as Searle's strong AI, unless it is assumed that awareness is essential for human-level AGI. Academic philosophers such as Searle do not believe that holds true, and to most artificial intelligence scientists the concern is out-of-scope. [130]
Mainstream AI is most interested in how a program acts. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it genuine or a simulation." [130] If the program can behave as if it has a mind, then there is no need to understand if it in fact has mind - undoubtedly, there would be no method to tell. For AI research study, Searle's "weak AI hypothesis" is equivalent to the declaration "artificial basic intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for approved, and do not care about the strong AI hypothesis." [130] Thus, for academic AI research, "Strong AI" and "AGI" are two various things.
Consciousness
Consciousness can have numerous meanings, and some elements play considerable roles in science fiction and the principles of expert system:
Sentience (or "incredible awareness"): The capability to "feel" understandings or feelings subjectively, rather than the capability to reason about understandings. Some philosophers, such as David Chalmers, use the term "consciousness" to refer solely to extraordinary consciousness, which is approximately equivalent to sentience. [132] Determining why and how subjective experience develops is understood as the tough issue of consciousness. [133] Thomas Nagel discussed in 1974 that it "seems like" something to be mindful. If we are not conscious, then it does not seem like anything. Nagel utilizes the example of a bat: we can sensibly ask "what does it seem like to be a bat?" However, we are unlikely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat appears to be conscious (i.e., has awareness) but a toaster does not. [134] In 2022, a Google engineer claimed that the business's AI chatbot, LaMDA, had actually attained life, though this claim was widely disputed by other professionals. [135]
Self-awareness: To have conscious awareness of oneself as a separate person, particularly to be consciously knowledgeable about one's own ideas. This is opposed to merely being the "subject of one's thought"-an os or debugger is able to be "knowledgeable about itself" (that is, to represent itself in the very same method it represents whatever else)-but this is not what individuals generally imply when they utilize the term "self-awareness". [g]
These qualities have an ethical dimension. AI sentience would generate issues of well-being and legal protection, similarly to animals. [136] Other aspects of consciousness associated to cognitive capabilities are also pertinent to the principle of AI rights. [137] Finding out how to integrate innovative AI with existing legal and social structures is an emergent problem. [138]
Benefits
AGI could have a broad variety of applications. If oriented towards such goals, AGI might assist alleviate various problems in the world such as appetite, poverty and health problems. [139]
AGI might improve performance and efficiency in many jobs. For instance, in public health, AGI could speed up medical research study, especially versus cancer. [140] It could look after the senior, [141] and equalize access to quick, top quality medical diagnostics. It could use enjoyable, cheap and customized education. [141] The requirement to work to subsist could become obsolete if the wealth produced is correctly redistributed. [141] [142] This likewise raises the question of the location of humans in a drastically automated society.
AGI might likewise help to make reasonable choices, and to anticipate and prevent catastrophes. It might likewise help to gain the advantages of potentially catastrophic technologies such as nanotechnology or environment engineering, while avoiding the associated risks. [143] If an AGI's main objective is to prevent existential disasters such as human extinction (which might be tough if the Vulnerable World Hypothesis turns out to be real), [144] it might take measures to drastically reduce the threats [143] while lessening the effect of these measures on our lifestyle.
Risks
Existential risks
AGI may represent several types of existential risk, which are dangers that threaten "the early extinction of Earth-originating intelligent life or the irreversible and drastic destruction of its potential for desirable future development". [145] The danger of human termination from AGI has actually been the topic of many disputes, however there is likewise the possibility that the development of AGI would result in a completely problematic future. Notably, it might be used to spread and maintain the set of values of whoever establishes it. If mankind still has ethical blind spots comparable to slavery in the past, AGI may irreversibly entrench it, avoiding ethical progress. [146] Furthermore, AGI could assist in mass surveillance and indoctrination, which could be utilized to produce a stable repressive around the world totalitarian program. [147] [148] There is likewise a risk for the devices themselves. If makers that are sentient or otherwise worthwhile of moral consideration are mass produced in the future, engaging in a civilizational path that forever disregards their welfare and interests could be an existential catastrophe. [149] [150] Considering how much AGI might improve mankind's future and help in reducing other existential dangers, Toby Ord calls these existential threats "an argument for proceeding with due care", not for "deserting AI". [147]
Risk of loss of control and human extinction
The thesis that AI poses an existential danger for human beings, and that this danger requires more attention, is questionable however has been endorsed in 2023 by numerous public figures, AI researchers and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed prevalent indifference:
So, facing possible futures of incalculable benefits and risks, the professionals are certainly doing whatever possible to guarantee the very best outcome, right? Wrong. If a remarkable alien civilisation sent us a message saying, 'We'll show up in a few years,' would we just respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is happening with AI. [153]
The prospective fate of humanity has in some cases been compared to the fate of gorillas threatened by human activities. The comparison specifies that higher intelligence permitted mankind to control gorillas, which are now vulnerable in manner ins which they might not have actually anticipated. As a result, the gorilla has actually ended up being an endangered types, not out of malice, but simply as a security damage from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to dominate humankind which we ought to beware not to anthropomorphize them and interpret their intents as we would for people. He said that people will not be "clever adequate to develop super-intelligent makers, yet extremely dumb to the point of giving it moronic goals without any safeguards". [155] On the other side, the concept of important convergence suggests that nearly whatever their goals, smart agents will have reasons to attempt to survive and get more power as intermediary steps to attaining these objectives. And that this does not need having emotions. [156]
Many scholars who are worried about existential risk advocate for more research study into resolving the "control issue" to respond to the question: what types of safeguards, algorithms, or architectures can programmers execute to increase the likelihood that their recursively-improving AI would continue to behave in a friendly, instead of devastating, manner after it reaches superintelligence? [157] [158] Solving the control problem is complicated by the AI arms race (which might cause a race to the bottom of security precautions in order to release products before competitors), [159] and making use of AI in weapon systems. [160]
The thesis that AI can present existential danger also has detractors. Skeptics generally state that AGI is unlikely in the short-term, or that issues about AGI sidetrack from other problems connected to existing AI. [161] Former Google fraud czar Shuman Ghosemajumder thinks about that for lots of people beyond the technology industry, existing chatbots and LLMs are already perceived as though they were AGI, leading to further misunderstanding and fear. [162]
Skeptics sometimes charge that the thesis is crypto-religious, with an illogical belief in the possibility of superintelligence replacing an unreasonable belief in a supreme God. [163] Some researchers think that the interaction projects on AI existential risk by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at attempt at regulatory capture and to pump up interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other market leaders and scientists, released a joint statement asserting that "Mitigating the danger of termination from AI must be a global concern together with other societal-scale dangers such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI approximated that "80% of the U.S. labor force might have at least 10% of their work jobs affected by the introduction of LLMs, while around 19% of employees may see at least 50% of their tasks impacted". [166] [167] They consider office employees to be the most exposed, for example mathematicians, accounting professionals or web designers. [167] AGI could have a better autonomy, capability to make decisions, to user interface with other computer tools, but also to manage robotized bodies.
According to Stephen Hawking, the outcome of automation on the quality of life will depend on how the wealth will be rearranged: [142]
Everyone can enjoy a life of elegant leisure if the machine-produced wealth is shared, or the majority of people can wind up miserably bad if the machine-owners effectively lobby versus wealth redistribution. So far, the trend seems to be toward the 2nd choice, with innovation driving ever-increasing inequality
Elon Musk considers that the automation of society will need governments to adopt a universal fundamental earnings. [168]
See likewise
Artificial brain - Software and hardware with cognitive capabilities comparable to those of the animal or human brain AI result AI safety - Research area on making AI safe and advantageous AI positioning - AI conformance to the intended goal A.I. Rising - 2018 film directed by Lazar Bodroža Expert system Automated artificial intelligence - Process of automating the application of artificial intelligence BRAIN Initiative - Collaborative public-private research effort revealed by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General video game playing - Ability of artificial intelligence to play various video games Generative artificial intelligence - AI system capable of creating material in reaction to prompts Human Brain Project - Scientific research job Intelligence amplification - Use of infotech to augment human intelligence (IA). Machine ethics - Moral behaviours of manufactured makers. Moravec's paradox. Multi-task learning - Solving several device finding out tasks at the exact same time. Neural scaling law - Statistical law in artificial intelligence. Outline of expert system - Overview of and topical guide to expert system. Transhumanism - Philosophical motion. Synthetic intelligence - Alternate term for or kind of expert system. Transfer knowing - Artificial intelligence method. Loebner Prize - Annual AI competitors. Hardware for expert system - Hardware specially designed and optimized for synthetic intelligence. Weak expert system - Form of expert system.
Notes
^ a b See below for the origin of the term "strong AI", and see the academic definition of "strong AI" and weak AI in the short article Chinese room. ^ AI founder John McCarthy composes: "we can not yet identify in basic what sort of computational procedures we want to call smart. " [26] (For a discussion of some meanings of intelligence used by expert system scientists, see viewpoint of expert system.). ^ The Lighthill report particularly slammed AI's "grandiose goals" and led the dismantling of AI research study in England. [55] In the U.S., DARPA ended up being determined to money only "mission-oriented direct research study, instead of fundamental undirected research". [56] [57] ^ As AI creator John McCarthy composes "it would be a great relief to the remainder of the workers in AI if the innovators of brand-new general formalisms would express their hopes in a more guarded type than has actually often been the case." [61] ^ In "Mind Children" [122] 1015 cps is used. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly correspond to 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As defined in a basic AI textbook: "The assertion that devices might potentially act (or, maybe much better, act as if they were smart) is called the 'weak AI' hypothesis by thinkers, and the assertion that machines that do so are in fact thinking (as opposed to imitating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is designed to carry out a single task. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to guarantee that artificial general intelligence advantages all of humankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new goal is creating synthetic general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is much better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D jobs were determined as being active in 2020. ^ a b c "AI timelines: What do experts in expert system expect for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton stops Google and warns of threat ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is hard to see how you can prevent the bad actors from utilizing it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals triggers of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you change changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York Times. The genuine danger is not AI itself however the way we release it. ^ "Impressed by synthetic intelligence? Experts state AGI is coming next, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could position existential risks to humankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last creation that humankind needs to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the danger of extinction from AI need to be a worldwide priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists caution of danger of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from producing makers that can outthink us in basic methods. ^ LeCun, Yann (June 2023). "AGI does not present an existential risk". Medium. There is no reason to fear AI as an existential hazard. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil describes strong AI as "device intelligence with the full series of human intelligence.". ^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical symbol system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007. ^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Artificial intelligence is transforming our world - it is on everybody to ensure that it goes well". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007. ^ This list of smart characteristics is based on the subjects covered by significant AI textbooks, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body shapes the way we think: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reassessed: The concept of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reevaluated: The principle of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real young boy - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists contest whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not identify GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing whatever from the bar exam to AP Biology. Here's a list of tough examinations both AI versions have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is outdated. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended checking an AI chatbot's capability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 quoted in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), estimated in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York City Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system researchers and software engineers avoided the term artificial intelligence for fear of being considered as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer season school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of maker intelligence: Despite progress in maker intelligence, synthetic basic intelligence is still a significant challenge". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Artificial intelligence will not develop into a Frankenstein's monster". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why basic artificial intelligence will not be recognized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us paradise or damage?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in artificial intelligence: A survey of professional viewpoint. In Fundamental issues of expert system (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards artificial general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep knowing in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog site). Archived from the original on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Expert System". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is two times as smart as Siri - however a six-year-old beats both] (in German). Archived from the initial on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're getting in the AI twilight zone between narrow and basic AI". VentureBeat. Archived from the original on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are currently seeing an early example of an AGI system in the recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is debatable, but the agreement is that it is not AGI. ... If absolutely nothing else, GPT-3 informs us there is a middle ground in between narrow and general AI. ^ Quach, Katyanna. "A designer built an AI chatbot using GPT-3 that helped a guy speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the initial on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's brand-new AI can perform over 600 tasks, from playing games to managing robots", TechCrunch, archived from the original on 16 June 2022, recovered 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. might rival human intelligence in 'simply a couple of years,' states CEO of Google's primary A.I. research study laboratory". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO says AI might pass human tests in five years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everybody appears to disagree on how to define Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research project maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A large range of views in present research, all of which need grounding to some degree ^ Thornton, Angela (26 June 2023). "How submitting our minds to a computer might end up being possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced estimate in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (priced estimate in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for interest by the field about why a program behaves the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who believes the business's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Expert System Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the cost surpass benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Benefit from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, risks, techniques (Reprinted with corrections 2017 ed.). Oxford, UK; New York City, New York, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that people will ruin ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security risk' to Australia, Senate questions states". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York City, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence looks at the ramifications of synthetic intelligence - however are we taking AI seriously enough?'". The Independent (UK). Archived from the initial on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The interesting Facebook dispute in between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI". The interesting Facebook dispute in between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI (in French). Retrieved 8 June 2023. ^ "Will Expert System Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to devastating AGI danger: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race risks spiralling out of control, report alerts". Financial Times. Archived from the original on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over hazard positioned but expert system can not be neglected". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the original on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stoking fears over AI, wiki.lafabriquedelalogistique.fr warn scientists". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain founder says big tech is lying about AI extinction risk". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early take a look at the labor market impact capacity of large language designs". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI says 80% of employees might see their jobs impacted by AI. These are the jobs most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we require universal basic income due to the fact that 'in the future, manual labor will be a choice'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Artificial intelligence and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Expert System. New York City, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial basic intelligence and the possibility of a technological singularity: a response to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Expert system, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, obtained 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the initial on 29 May 2011, retrieved 7 May 2011. Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Viewpoint, archived from the original on 17 August 2007, obtained 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Artificial Intelligence: a paper symposium, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (5th ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Expert system?. Stanford University. The ultimate effort is to make computer system programs that can fix problems and accomplish objectives in the world in addition to people. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will computer system hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, recovered 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, recovered 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the original on 12 January 2008, recovered 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Sensible Approach, New York City: Oxford University Press, archived from the original on 25 July 2009, recovered 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (second ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the original on 25 March 2020, recovered 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, retrieved 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on significance and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the initial on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the original on 18 February 2021, retrieved 4 September 2013 - through ResearchGate Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, recovered 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think of the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what might be called "Dyson's Law") that "Any system easy sufficient to be understandable will not be complicated enough to behave wisely, while any system made complex enough to act intelligently will be too made complex to comprehend." (p. 197.) Computer researcher Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead easy silly. They work, however they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the original on 26 July 2010, retrieved 25 July 2010. Gleick, James, "The Fate of Free Will" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Choice, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what identifies us from devices. For biological creatures, reason and purpose come from acting in the world and experiencing the consequences. Artificial intelligences - disembodied, complete strangers to blood, sweat, and tears - have no occasion for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically expect that those who hope to get rich from AI are going to have the interests of the rest of us close at heart,' ... composes [Gary Marcus] 'We can't rely on governments driven by project finance contributions [from tech business] to push back.' ... Marcus information the demands that citizens should make of their federal governments and the tech business. They include transparency on how AI systems work; compensation for individuals if their information [are] utilized to train LLMs (big language model) s and the right to permission to this usage; and the capability to hold tech business liable for the harms they cause by removing Section 230, imposing money penalites, and passing more stringent product liability laws ... Marcus also recommends ... that a brand-new, AI-specific federal agency, comparable to the FDA, the FCC, or the FTC, may offer the most robust oversight ... [T] he Fordham law professor Chinmayi Sharma ... recommends ... develop [ing] a professional licensing program for engineers that would function in a comparable method to medical licenses, malpractice suits, and the Hippocratic oath in medication. 'What if, like physicians,' she asks ..., 'AI engineers also vowed to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in artificial intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually stymied human beings for years, reveals the restrictions of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competition has exposed that although NLP (natural-language processing) designs can unbelievable feats, their capabilities are quite restricted by the quantity of context they receive. This [...] might trigger [troubles] for researchers who want to use them to do things such as examine ancient languages. In some cases, there are few historical records on long-gone civilizations to serve as training information for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to produce fake videos equivalent from real ones. Just how much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we indicate sensible videos produced using expert system that actually deceive individuals, then they barely exist. The fakes aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in general, running in our media as counterfeited proof. Their function better looks like that of cartoons, specifically smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We need to prevent humanizing machine-learning models utilized in clinical research", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a device a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the newest, buzziest systems of synthetic basic intelligence are stymmied by the same old issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Expert System, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the original on 3 March 2016, obtained 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, provided and dispersed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead police to neglect inconsistent proof?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test but revealed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at tasks that require genuine humanlike reasoning or an understanding of the physical and social world ... ChatGPT appeared unable to factor realistically and attempted to rely on its vast database of ... facts originated from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI innovations are powerful but unreliable. Rules-based systems can not handle situations their developers did not anticipate. Learning systems are restricted by the data on which they were trained. AI failures have actually already led to tragedy. Advanced auto-pilot functions in cars and trucks, although they carry out well in some situations, have driven cars and trucks without alerting into trucks, concrete barriers, and parked cars. In the wrong circumstance, AI systems go from supersmart to superdumb in an instant. When an enemy is attempting to manipulate and hack an AI system, complexityzoo.net the risks are even higher." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are enabled by brand-new innovations but rely on the timelelss human tendency to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.