Artificial General Intelligence
Artificial basic intelligence (AGI) is a type of artificial intelligence (AI) that matches or exceeds human cognitive abilities across a vast array of cognitive tasks. This contrasts with narrow AI, which is limited to particular tasks. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that considerably surpasses human cognitive abilities. AGI is thought about among the meanings of strong AI.
Creating AGI is a primary objective of AI research study and of business such as OpenAI [2] and Meta. [3] A 2020 study identified 72 active AGI research and advancement jobs across 37 countries. [4]
The timeline for accomplishing AGI remains a topic of ongoing debate among scientists and professionals. As of 2023, some argue that it may be possible in years or years; others maintain it may take a or longer; a minority think it might never ever be accomplished; and another minority declares that it is currently here. [5] [6] Notable AI researcher Geoffrey Hinton has actually revealed issues about the rapid development towards AGI, suggesting it could be attained earlier than numerous anticipate. [7]
There is debate on the specific definition of AGI and regarding whether modern large language models (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a common subject in science fiction and futures studies. [9] [10]
Contention exists over whether AGI represents an existential risk. [11] [12] [13] Many experts on AI have actually specified that reducing the risk of human termination positioned by AGI ought to be an international priority. [14] [15] Others discover the development of AGI to be too remote to provide such a threat. [16] [17]
Terminology
AGI is also known as strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level smart AI, or general smart action. [21]
Some academic sources book the term "strong AI" for computer programs that experience life or consciousness. [a] On the other hand, weak AI (or narrow AI) has the ability to fix one particular issue but lacks basic cognitive capabilities. [22] [19] Some scholastic sources utilize "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the very same sense as human beings. [a]
Related concepts consist of synthetic superintelligence and transformative AI. A synthetic superintelligence (ASI) is a hypothetical kind of AGI that is much more usually intelligent than human beings, [23] while the concept of transformative AI connects to AI having a big effect on society, for example, similar to the farming or industrial transformation. [24]
A framework for classifying AGI in levels was proposed in 2023 by Google DeepMind researchers. They specify five levels of AGI: emerging, qualified, expert, virtuoso, and superhuman. For example, a competent AGI is specified as an AI that surpasses 50% of skilled grownups in a wide variety of non-physical jobs, and a superhuman AGI (i.e. an artificial superintelligence) is likewise defined however with a limit of 100%. They consider big language designs like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular meanings of intelligence have been proposed. Among the leading proposals is the Turing test. However, there are other popular definitions, and some scientists disagree with the more popular approaches. [b]
Intelligence qualities
Researchers normally hold that intelligence is required to do all of the following: [27]
factor, use strategy, solve puzzles, and make judgments under uncertainty
represent knowledge, including typical sense knowledge
strategy
find out
- communicate in natural language
- if necessary, incorporate these abilities in conclusion of any offered goal
Many interdisciplinary techniques (e.g. cognitive science, computational intelligence, and choice making) think about additional qualities such as creativity (the ability to form novel psychological images and principles) [28] and autonomy. [29]
Computer-based systems that exhibit many of these capabilities exist (e.g. see computational creativity, automated thinking, choice support group, robot, evolutionary calculation, intelligent representative). There is debate about whether contemporary AI systems possess them to a sufficient degree.
Physical characteristics
Other abilities are considered desirable in smart systems, as they may impact intelligence or aid in its expression. These consist of: [30]
- the ability to sense (e.g. see, hear, and so on), and - the capability to act (e.g. move and manipulate objects, change location to explore, and so on).
This includes the capability to discover and react to threat. [31]
Although the capability to sense (e.g. see, hear, and so on) and the capability to act (e.g. relocation and control items, modification place to explore, etc) can be preferable for some smart systems, [30] these physical capabilities are not strictly required for an entity to qualify as AGI-particularly under the thesis that big language designs (LLMs) might currently be or end up being AGI. Even from a less positive point of view on LLMs, there is no company requirement for an AGI to have a human-like kind; being a silicon-based computational system suffices, provided it can process input (language) from the external world in place of human senses. This interpretation aligns with the understanding that AGI has actually never been proscribed a particular physical embodiment and thus does not demand a capability for locomotion or traditional "eyes and ears". [32]
Tests for human-level AGI
Several tests suggested to validate human-level AGI have actually been thought about, consisting of: [33] [34]
The idea of the test is that the device needs to attempt and pretend to be a guy, by answering concerns put to it, and it will only pass if the pretence is fairly persuading. A substantial part of a jury, who must not be expert about makers, should be taken in by the pretence. [37]
AI-complete issues
A problem is informally called "AI-complete" or "AI-hard" if it is thought that in order to resolve it, one would need to execute AGI, since the option is beyond the abilities of a purpose-specific algorithm. [47]
There are many issues that have actually been conjectured to need basic intelligence to resolve as well as humans. Examples consist of computer vision, natural language understanding, and dealing with unexpected scenarios while fixing any real-world problem. [48] Even a particular job like translation needs a device to check out and compose in both languages, follow the author's argument (reason), comprehend the context (understanding), and faithfully replicate the author's original intent (social intelligence). All of these issues require to be resolved concurrently in order to reach human-level maker efficiency.
However, a lot of these tasks can now be performed by modern big language models. According to Stanford University's 2024 AI index, AI has reached human-level efficiency on many criteria for checking out understanding and visual thinking. [49]
History
Classical AI
Modern AI research began in the mid-1950s. [50] The very first generation of AI researchers were persuaded that artificial basic intelligence was possible and that it would exist in just a couple of years. [51] AI pioneer Herbert A. Simon composed in 1965: "makers will be capable, within twenty years, of doing any work a male can do." [52]
Their predictions were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists believed they might develop by the year 2001. AI pioneer Marvin Minsky was a specialist [53] on the task of making HAL 9000 as practical as possible according to the agreement forecasts of the time. He stated in 1967, "Within a generation ... the issue of creating 'synthetic intelligence' will considerably be resolved". [54]
Several classical AI projects, such as Doug Lenat's Cyc project (that began in 1984), and Allen Newell's Soar task, were directed at AGI.
However, in the early 1970s, it became obvious that researchers had actually grossly undervalued the problem of the task. Funding companies became skeptical of AGI and put researchers under increasing pressure to produce useful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that included AGI goals like "continue a table talk". [58] In response to this and the success of professional systems, both industry and government pumped cash into the field. [56] [59] However, self-confidence in AI spectacularly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never ever fulfilled. [60] For the 2nd time in 20 years, AI researchers who anticipated the impending achievement of AGI had actually been misinterpreted. By the 1990s, AI researchers had a track record for making vain guarantees. They ended up being unwilling to make forecasts at all [d] and suvenir51.ru avoided reference of "human level" expert system for worry of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research study
In the 1990s and early 21st century, mainstream AI achieved industrial success and academic respectability by focusing on particular sub-problems where AI can produce verifiable results and industrial applications, such as speech acknowledgment and recommendation algorithms. [63] These "applied AI" systems are now utilized thoroughly throughout the technology market, and research in this vein is greatly funded in both academia and market. As of 2018 [update], development in this field was considered an emerging pattern, and a fully grown phase was expected to be reached in more than ten years. [64]
At the turn of the century, lots of traditional AI scientists [65] hoped that strong AI could be developed by integrating programs that resolve various sub-problems. Hans Moravec wrote in 1988:
I am confident that this bottom-up route to synthetic intelligence will one day meet the standard top-down route over half method, prepared to supply the real-world proficiency and the commonsense understanding that has been so frustratingly elusive in reasoning programs. Fully intelligent devices will result when the metaphorical golden spike is driven unifying the two efforts. [65]
However, even at the time, this was contested. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by mentioning:
The expectation has actually typically been voiced that "top-down" (symbolic) approaches to modeling cognition will somehow fulfill "bottom-up" (sensory) approaches someplace in between. If the grounding factors to consider in this paper are valid, then this expectation is hopelessly modular and there is truly just one practical path from sense to symbols: from the ground up. A free-floating symbolic level like the software application level of a computer will never be reached by this path (or vice versa) - nor is it clear why we should even try to reach such a level, given that it looks as if getting there would just total up to uprooting our signs from their intrinsic meanings (consequently merely lowering ourselves to the functional equivalent of a programmable computer). [66]
Modern artificial basic intelligence research study
The term "artificial basic intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a conversation of the implications of fully automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent increases "the capability to please objectives in a large range of environments". [68] This kind of AGI, identified by the ability to increase a mathematical meaning of intelligence rather than display human-like behaviour, [69] was likewise called universal expert system. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary outcomes". The very first summertime school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was provided in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, arranged by Lex Fridman and including a number of guest lecturers.
As of 2023 [update], a little number of computer system scientists are active in AGI research study, and numerous add to a series of AGI conferences. However, increasingly more scientists have an interest in open-ended learning, [76] [77] which is the concept of enabling AI to continually discover and innovate like human beings do.
Feasibility
Since 2023, the advancement and prospective achievement of AGI remains a subject of extreme dispute within the AI neighborhood. While traditional consensus held that AGI was a distant goal, recent developments have actually led some researchers and market figures to declare that early kinds of AGI might already exist. [78] AI pioneer Herbert A. Simon hypothesized in 1965 that "devices will be capable, within twenty years, of doing any work a man can do". This forecast failed to come true. Microsoft co-founder Paul Allen thought that such intelligence is not likely in the 21st century since it would need "unforeseeable and essentially unpredictable developments" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf between contemporary computing and human-level synthetic intelligence is as wide as the gulf between current space flight and useful faster-than-light spaceflight. [80]
A more challenge is the lack of clearness in specifying what intelligence requires. Does it require consciousness? Must it display the capability to set goals as well as pursue them? Is it purely a matter of scale such that if design sizes increase adequately, intelligence will emerge? Are facilities such as planning, thinking, and causal understanding needed? Does intelligence require explicitly replicating the brain and its particular faculties? Does it require emotions? [81]
Most AI scientists think strong AI can be attained in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of accomplishing strong AI. [82] [83] John McCarthy is amongst those who believe human-level AI will be achieved, however that today level of development is such that a date can not accurately be predicted. [84] AI experts' views on the expediency of AGI wax and subside. Four polls carried out in 2012 and 2013 suggested that the typical price quote among specialists for when they would be 50% confident AGI would get here was 2040 to 2050, depending upon the survey, with the mean being 2081. Of the specialists, 16.5% addressed with "never" when asked the same question however with a 90% confidence instead. [85] [86] Further existing AGI development considerations can be discovered above Tests for verifying human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year amount of time there is a strong bias towards anticipating the arrival of human-level AI as between 15 and 25 years from the time the prediction was made". They examined 95 predictions made between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft scientists released an in-depth evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, our company believe that it might fairly be considered as an early (yet still incomplete) variation of a synthetic general intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 surpasses 99% of human beings on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a substantial level of general intelligence has currently been accomplished with frontier designs. They composed that unwillingness to this view comes from four primary factors: a "healthy uncertainty about metrics for AGI", an "ideological dedication to alternative AI theories or methods", a "dedication to human (or biological) exceptionalism", or a "issue about the economic implications of AGI". [91]
2023 also marked the development of large multimodal designs (large language designs efficient in processing or generating numerous methods such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the very first of a series of designs that "invest more time thinking before they respond". According to Mira Murati, this ability to believe before reacting represents a brand-new, additional paradigm. It enhances design outputs by investing more computing power when creating the answer, whereas the model scaling paradigm improves outputs by increasing the model size, training data and training calculate power. [93] [94]
An OpenAI employee, Vahid Kazemi, claimed in 2024 that the business had attained AGI, stating, "In my opinion, we have actually currently achieved AGI and it's even more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any job", it is "much better than the majority of humans at a lot of jobs." He also attended to criticisms that big language models (LLMs) simply follow predefined patterns, comparing their learning procedure to the scientific method of observing, assuming, and verifying. These statements have sparked debate, as they rely on a broad and unconventional meaning of AGI-traditionally understood as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's models show amazing flexibility, they might not fully meet this requirement. Notably, Kazemi's remarks came shortly after OpenAI got rid of "AGI" from the regards to its partnership with Microsoft, triggering speculation about the business's tactical objectives. [95]
Timescales
Progress in expert system has actually traditionally gone through periods of fast progress separated by durations when progress appeared to stop. [82] Ending each hiatus were basic advances in hardware, software application or both to create area for further progress. [82] [98] [99] For example, the hardware readily available in the twentieth century was not enough to carry out deep knowing, which needs big numbers of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel states that estimates of the time needed before a really flexible AGI is constructed vary from 10 years to over a century. Since 2007 [upgrade], the consensus in the AGI research study neighborhood seemed to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was plausible. [103] Mainstream AI scientists have offered a wide variety of opinions on whether development will be this fast. A 2012 meta-analysis of 95 such opinions discovered a bias towards forecasting that the onset of AGI would take place within 16-26 years for contemporary and historical predictions alike. That paper has been criticized for how it classified opinions as professional or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competitors with a top-5 test error rate of 15.3%, substantially much better than the second-best entry's rate of 26.3% (the standard approach used a weighted sum of scores from various pre-defined classifiers). [105] AlexNet was considered as the preliminary ground-breaker of the existing deep learning wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu conducted intelligence tests on publicly offered and easily available weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ value of about 47, which corresponds around to a six-year-old child in very first grade. A grownup pertains to about 100 usually. Similar tests were performed in 2014, with the IQ rating reaching a maximum value of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language design efficient in performing many diverse jobs without particular training. According to Gary Grossman in a VentureBeat short article, while there is agreement that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be categorized as a narrow AI system. [108]
In the very same year, Jason Rohrer used his GPT-3 account to establish a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI asked for modifications to the chatbot to adhere to their safety standards; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system efficient in performing more than 600 different jobs. [110]
In 2023, Microsoft Research released a study on an early version of OpenAI's GPT-4, contending that it showed more general intelligence than previous AI models and showed human-level efficiency in jobs covering several domains, such as mathematics, coding, and law. This research study stimulated a debate on whether GPT-4 might be thought about an early, insufficient version of artificial basic intelligence, highlighting the requirement for more exploration and examination of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton specified that: [112]
The concept that this things might actually get smarter than individuals - a few people believed that, [...] But the majority of people believed it was method off. And I believed it was method off. I believed it was 30 to 50 years and even longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis likewise stated that "The development in the last few years has actually been quite unbelievable", and that he sees no factor why it would slow down, anticipating AGI within a decade or perhaps a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within five years, AI would be capable of passing any test a minimum of along with humans. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a former OpenAI staff member, approximated AGI by 2027 to be "strikingly plausible". [115]
Whole brain emulation
While the advancement of transformer designs like in ChatGPT is considered the most promising course to AGI, [116] [117] entire brain emulation can serve as an alternative approach. With entire brain simulation, a brain model is constructed by scanning and mapping a biological brain in information, and after that copying and replicating it on a computer system or another computational gadget. The simulation design should be adequately devoted to the initial, so that it acts in almost the very same way as the original brain. [118] Whole brain emulation is a kind of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research study functions. It has actually been gone over in expert system research [103] as an approach to strong AI. Neuroimaging innovations that could provide the required in-depth understanding are improving rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] anticipates that a map of sufficient quality will appear on a similar timescale to the computing power required to imitate it.
Early estimates
For low-level brain simulation, a very powerful cluster of computer systems or GPUs would be required, provided the enormous amount of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by their adult years. Estimates vary for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A quote of the brain's processing power, based on a basic switch model for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at various price quotes for the hardware needed to equate to the human brain and adopted a figure of 1016 calculations per 2nd (cps). [e] (For contrast, if a "calculation" was comparable to one "floating-point operation" - a step used to rate present supercomputers - then 1016 "calculations" would be comparable to 10 petaFLOPS, achieved in 2011, while 1018 was attained in 2022.) He used this figure to anticipate the essential hardware would be readily available at some point between 2015 and 2025, if the exponential development in computer power at the time of composing continued.
Current research
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has established an especially comprehensive and publicly accessible atlas of the human brain. [124] In 2023, researchers from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based methods
The artificial neuron design presumed by Kurzweil and utilized in lots of current synthetic neural network implementations is basic compared with biological neurons. A brain simulation would likely need to catch the in-depth cellular behaviour of biological neurons, currently comprehended only in broad summary. The overhead presented by full modeling of the biological, chemical, and physical information of neural behaviour (especially on a molecular scale) would require computational powers numerous orders of magnitude larger than Kurzweil's price quote. In addition, the quotes do not represent glial cells, which are understood to contribute in cognitive processes. [125]
A fundamental criticism of the simulated brain technique stems from embodied cognition theory which asserts that human embodiment is an essential aspect of human intelligence and is necessary to ground meaning. [126] [127] If this theory is appropriate, any fully functional brain design will require to encompass more than just the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as a choice, but it is unidentified whether this would suffice.
Philosophical point of view
"Strong AI" as specified in viewpoint
In 1980, theorist John Searle created the term "strong AI" as part of his Chinese room argument. [128] He proposed a distinction in between 2 hypotheses about artificial intelligence: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "consciousness". Weak AI hypothesis: An expert system system can (only) act like it thinks and has a mind and awareness.
The first one he called "strong" due to the fact that it makes a more powerful declaration: it assumes something special has taken place to the machine that exceeds those capabilities that we can check. The behaviour of a "weak AI" maker would be specifically identical to a "strong AI" machine, however the latter would also have subjective mindful experience. This usage is also common in scholastic AI research and books. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil use the term "strong AI" to indicate "human level artificial general intelligence". [102] This is not the like Searle's strong AI, unless it is presumed that awareness is essential for human-level AGI. Academic philosophers such as Searle do not think that holds true, and to most expert system researchers the question is out-of-scope. [130]
Mainstream AI is most interested in how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no need to understand if it really has mind - indeed, there would be no method to inform. For AI research study, Searle's "weak AI hypothesis" is equivalent to the declaration "synthetic general intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for approved, and don't care about the strong AI hypothesis." [130] Thus, for scholastic AI research, "Strong AI" and "AGI" are two different things.
Consciousness
Consciousness can have various significances, and some aspects play significant roles in sci-fi and the principles of artificial intelligence:
Sentience (or "remarkable awareness"): The capability to "feel" understandings or emotions subjectively, instead of the ability to reason about perceptions. Some philosophers, such as David Chalmers, use the term "awareness" to refer specifically to extraordinary awareness, which is approximately comparable to sentience. [132] Determining why and how subjective experience occurs is understood as the tough problem of consciousness. [133] Thomas Nagel described in 1974 that it "feels like" something to be mindful. If we are not mindful, then it doesn't seem like anything. Nagel utilizes the example of a bat: we can smartly ask "what does it seem like to be a bat?" However, we are not likely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems conscious (i.e., has awareness) but a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had actually accomplished sentience, though this claim was widely challenged by other professionals. [135]
Self-awareness: To have conscious awareness of oneself as a different person, particularly to be knowingly knowledgeable about one's own thoughts. This is opposed to simply being the "subject of one's thought"-an operating system or debugger is able to be "familiar with itself" (that is, to represent itself in the exact same way it represents whatever else)-but this is not what individuals generally imply when they use the term "self-awareness". [g]
These traits have a moral measurement. AI life would generate concerns of well-being and legal defense, likewise to animals. [136] Other aspects of consciousness associated to cognitive abilities are also relevant to the concept of AI rights. [137] Finding out how to integrate sophisticated AI with existing legal and social structures is an emergent issue. [138]
Benefits
AGI could have a wide variety of applications. If oriented towards such goals, AGI could assist mitigate various issues in the world such as appetite, hardship and illness. [139]
AGI might improve performance and effectiveness in most tasks. For instance, in public health, AGI might speed up medical research, significantly against cancer. [140] It could look after the senior, [141] and democratize access to quick, high-quality medical diagnostics. It could offer enjoyable, low-cost and personalized education. [141] The requirement to work to subsist might become outdated if the wealth produced is effectively rearranged. [141] [142] This likewise raises the concern of the location of human beings in a drastically automated society.
AGI could likewise help to make rational choices, and to anticipate and avoid disasters. It might also assist to profit of possibly catastrophic technologies such as nanotechnology or climate engineering, while avoiding the associated threats. [143] If an AGI's main objective is to prevent existential catastrophes such as human termination (which could be challenging if the Vulnerable World Hypothesis ends up being real), [144] it could take procedures to considerably lower the dangers [143] while decreasing the effect of these steps on our quality of life.
Risks
Existential dangers
AGI may represent multiple types of existential risk, which are risks that threaten "the premature extinction of Earth-originating intelligent life or the long-term and drastic damage of its potential for preferable future development". [145] The risk of human termination from AGI has been the subject of many debates, but there is likewise the possibility that the advancement of AGI would result in a permanently flawed future. Notably, it could be utilized to spread and preserve the set of worths of whoever develops it. If humanity still has moral blind spots comparable to slavery in the past, AGI might irreversibly entrench it, avoiding moral development. [146] Furthermore, AGI could assist in mass monitoring and brainwashing, which might be utilized to produce a stable repressive worldwide totalitarian program. [147] [148] There is also a danger for the makers themselves. If makers that are sentient or otherwise worthwhile of ethical consideration are mass created in the future, taking part in a civilizational path that forever disregards their well-being and interests might be an existential catastrophe. [149] [150] Considering just how much AGI could improve mankind's future and aid minimize other existential threats, Toby Ord calls these existential threats "an argument for continuing with due care", not for "abandoning AI". [147]
Risk of loss of control and human termination
The thesis that AI positions an existential danger for humans, which this danger requires more attention, is controversial but has been endorsed in 2023 by lots of public figures, AI scientists and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking criticized widespread indifference:
So, dealing with possible futures of enormous benefits and dangers, the specialists are certainly doing whatever possible to make sure the finest result, right? Wrong. If a remarkable alien civilisation sent us a message stating, 'We'll get here in a few years,' would we simply reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is occurring with AI. [153]
The potential fate of humanity has often been compared to the fate of gorillas threatened by human activities. The contrast mentions that greater intelligence enabled humanity to dominate gorillas, which are now vulnerable in methods that they might not have expected. As a result, the gorilla has ended up being an endangered species, not out of malice, but simply as a civilian casualties from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to control humankind which we should be careful not to anthropomorphize them and analyze their intents as we would for humans. He stated that individuals will not be "smart adequate to design super-intelligent devices, lovewiki.faith yet unbelievably foolish to the point of providing it moronic objectives without any safeguards". [155] On the other side, the concept of instrumental convergence suggests that nearly whatever their objectives, smart agents will have factors to attempt to make it through and obtain more power as intermediary actions to attaining these objectives. Which this does not require having feelings. [156]
Many scholars who are concerned about existential risk advocate for more research into resolving the "control problem" to answer the question: what types of safeguards, algorithms, or architectures can programmers carry out to increase the possibility that their recursively-improving AI would continue to behave in a friendly, rather than devastating, way after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which could cause a race to the bottom of security precautions in order to launch products before rivals), [159] and using AI in weapon systems. [160]
The thesis that AI can position existential risk likewise has critics. Skeptics normally state that AGI is not likely in the short-term, or that concerns about AGI sidetrack from other issues associated with current AI. [161] Former Google fraud czar Shuman Ghosemajumder considers that for many individuals outside of the technology industry, existing chatbots and LLMs are already perceived as though they were AGI, leading to additional misunderstanding and fear. [162]
Skeptics in some cases charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence replacing an unreasonable belief in an omnipotent God. [163] Some researchers think that the communication projects on AI existential danger by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at attempt at regulative capture and to pump up interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, along with other market leaders and researchers, provided a joint statement asserting that "Mitigating the threat of termination from AI must be a global concern together with other societal-scale risks such as pandemics and nuclear war." [152]
Mass joblessness
Researchers from OpenAI approximated that "80% of the U.S. workforce might have at least 10% of their work tasks affected by the introduction of LLMs, while around 19% of employees might see at least 50% of their jobs affected". [166] [167] They think about office employees to be the most exposed, for example mathematicians, accountants or web designers. [167] AGI might have a much better autonomy, ability to make decisions, to user interface with other computer tools, but also to control robotized bodies.
According to Stephen Hawking, the outcome of automation on the lifestyle will depend upon how the wealth will be redistributed: [142]
Everyone can take pleasure in a life of luxurious leisure if the machine-produced wealth is shared, or many people can end up badly poor if the machine-owners effectively lobby against wealth redistribution. Up until now, the pattern appears to be towards the 2nd alternative, with technology driving ever-increasing inequality
Elon Musk considers that the automation of society will require federal governments to adopt a universal fundamental income. [168]
See also
Artificial brain - Software and hardware with cognitive capabilities comparable to those of the animal or human brain AI effect AI safety - Research area on making AI safe and beneficial AI positioning - AI conformance to the designated objective A.I. Rising - 2018 movie directed by Lazar Bodroža Expert system Automated artificial intelligence - Process of automating the application of machine knowing BRAIN Initiative - Collaborative public-private research effort announced by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General game playing - Ability of expert system to play different games Generative expert system - AI system efficient in creating material in action to prompts Human Brain Project - Scientific research task Intelligence amplification - Use of infotech to enhance human intelligence (IA). Machine ethics - Moral behaviours of man-made machines. Moravec's paradox. Multi-task knowing - Solving numerous device finding out jobs at the very same time. Neural scaling law - Statistical law in machine knowing. Outline of expert system - Overview of and topical guide to synthetic intelligence. Transhumanism - Philosophical movement. Synthetic intelligence - Alternate term for or type of artificial intelligence. Transfer learning - Artificial intelligence technique. Loebner Prize - Annual AI competitors. Hardware for expert system - Hardware specifically created and optimized for expert system. Weak expert system - Form of synthetic intelligence.
Notes
^ a b See below for the origin of the term "strong AI", and see the academic meaning of "strong AI" and weak AI in the short article Chinese room. ^ AI founder John McCarthy writes: "we can not yet identify in basic what type of computational treatments we want to call smart. " [26] (For a conversation of some meanings of intelligence utilized by synthetic intelligence researchers, see approach of expert system.). ^ The Lighthill report specifically criticized AI's "grandiose objectives" and led the dismantling of AI research in England. [55] In the U.S., DARPA became figured out to money only "mission-oriented direct research, rather than fundamental undirected research". [56] [57] ^ As AI founder John McCarthy writes "it would be a fantastic relief to the rest of the workers in AI if the innovators of brand-new general formalisms would express their hopes in a more guarded type than has sometimes held true." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately represent 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As specified in a basic AI book: "The assertion that devices could potentially act wisely (or, maybe much better, act as if they were smart) is called the 'weak AI' hypothesis by theorists, and the assertion that makers that do so are actually believing (as opposed to mimicing thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is created to carry out a single job. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to make sure that artificial general intelligence advantages all of mankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new objective is producing synthetic general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to construct AI that is better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were recognized as being active in 2020. ^ a b c "AI timelines: What do experts in expert system expect for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton quits Google and alerts of risk ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is hard to see how you can prevent the bad actors from using it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows triggers of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you change changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York City Times. The real threat is not AI itself however the way we deploy it. ^ "Impressed by artificial intelligence? Experts state AGI is following, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could posture existential threats to humankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last innovation that humankind requires to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the danger of extinction from AI should be an international priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI professionals caution of danger of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from producing machines that can outthink us in general methods. ^ LeCun, Yann (June 2023). "AGI does not provide an existential threat". Medium. There is no reason to fear AI as an existential threat. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil describes strong AI as "machine intelligence with the full range of human intelligence.". ^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical sign system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007. ^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Expert system is transforming our world - it is on everybody to ensure that it works out". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007. ^ This list of smart traits is based upon the topics covered by significant AI books, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body forms the way we think: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reevaluated: The idea of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reassessed: The principle of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What happens when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real young boy - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists contest whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not identify GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing whatever from the bar test to AP Biology. Here's a list of hard exams both AI versions have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Capitalize on It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is outdated. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested evaluating an AI chatbot's capability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 estimated in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), priced estimate in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York City Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer researchers and software engineers prevented the term expert system for worry of being deemed wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who coined the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of device intelligence: Despite development in maker intelligence, synthetic general intelligence is still a major challenge". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Artificial intelligence will not turn into a Frankenstein's monster". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why basic expert system will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us utopia or damage?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future development in artificial intelligence: A study of skilled opinion. In Fundamental concerns of synthetic intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of devices: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, asteroidsathome.net Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards artificial general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the original on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog site). Archived from the initial on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is two times as clever as Siri - but a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're entering the AI twilight zone between narrow and basic AI". VentureBeat. Archived from the original on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are currently seeing an early example of an AGI system in the just recently announced GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the first example of an AGI system? This is arguable, but the agreement is that it is not AGI. ... If nothing else, GPT-3 informs us there is a happy medium in between narrow and general AI. ^ Quach, Katyanna. "A designer developed an AI chatbot utilizing GPT-3 that helped a male speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the initial on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can perform over 600 tasks, from playing games to controlling robots", TechCrunch, archived from the initial on 16 June 2022, recovered 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York City Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could rival human intelligence in 'simply a couple of years,' states CEO of Google's main A.I. research laboratory". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO says AI could pass human tests in five years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everybody seems to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research project maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A wide variety of views in current research, all of which need grounding to some degree ^ Thornton, Angela (26 June 2023). "How publishing our minds to a computer system may become possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For instance: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced quote in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (estimated in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable synthetic intelligence for interest by the field about why a program acts the way it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the business's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Expert System Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Artificial Intelligence Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense surpass advantages?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Take advantage of Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, risks, techniques (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that human beings will damage ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security threat' to Australia, Senate query says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York City, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the implications of expert system - but are we taking AI seriously enough?'". The Independent (UK). Archived from the initial on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The interesting Facebook dispute in between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI". The interesting Facebook argument between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI (in French). Retrieved 8 June 2023. ^ "Will Expert System Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to devastating AGI danger: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race risks spiralling out of control, report alerts". Financial Times. Archived from the original on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over threat postured but artificial intelligence can not be overlooked". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the original on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring fears over AI, alert researchers". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain creator says huge tech is lying about AI extinction risk". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early look at the labor market impact potential of big language models". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of workers could see their tasks impacted by AI. These are the jobs most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we require universal basic income since 'in the future, physical work will be an option'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the original on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Artificial intelligence and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Artificial Intelligence. New York, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the original (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial general intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, obtained 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, retrieved 7 May 2011. Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Point of view, archived from the original on 17 August 2007, obtained 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Expert System: a paper symposium, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (5th ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The supreme effort is to make computer programs that can fix problems and achieve objectives on the planet along with humans. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, recovered 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the original on 16 October 2011, recovered 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Technology as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, recovered 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Rational Approach, New York City: Oxford University Press, archived from the original on 25 July 2009, obtained 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Expert System: A Modern Approach (second ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, retrieved 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, obtained 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on significance and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the initial on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the initial on 18 February 2021, retrieved 4 September 2013 - by means of ResearchGate Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, recovered 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think about the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what may be called "Dyson's Law") that "Any system basic adequate to be reasonable will not be made complex enough to behave intelligently, while any system made complex enough to act wisely will be too made complex to understand." (p. 197.) Computer scientist Alex Pentland composes: "Current AI machine-learning algorithms are, at their core, dead simple stupid. They work, but they work by strength." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, recovered 25 July 2010. Gleick, James, "The Fate of Free Will" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Choice, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what differentiates us from makers. For biological creatures, reason and purpose originate from acting worldwide and experiencing the consequences. Artificial intelligences - disembodied, complete strangers to blood, sweat, and tears - have no celebration for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Living in the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically anticipate that those who want to get rich from AI are going to have the interests of the rest people close at heart,' ... composes [Gary Marcus] 'We can't rely on governments driven by project finance contributions [from tech companies] to press back.' ... Marcus information the demands that citizens need to make from their federal governments and the tech companies. They consist of openness on how AI systems work; compensation for individuals if their data [are] utilized to train LLMs (large language model) s and the right to approval to this usage; and trademarketclassifieds.com the capability to hold tech business liable for the harms they bring on by eliminating Section 230, enforcing money penalites, and passing more stringent item liability laws ... Marcus also recommends ... that a brand-new, AI-specific federal company, similar to the FDA, the FCC, or the FTC, may supply the most robust oversight ... [T] he Fordham law professor Chinmayi Sharma ... recommends ... establish [ing] an expert licensing routine for engineers that would operate in a similar way to medical licenses, malpractice suits, and the Hippocratic oath in medicine. 'What if, like physicians,' she asks ..., 'AI engineers also swore to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually stymied human beings for years, exposes the restrictions of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder mystery competition has actually revealed that although NLP (natural-language processing) designs can unbelievable tasks, their abilities are quite restricted by the quantity of context they receive. This [...] might trigger [problems] for researchers who want to utilize them to do things such as examine ancient languages. In some cases, there are few historical records on long-gone civilizations to work as training data for such a function." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to produce fake videos indistinguishable from genuine ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we imply sensible videos produced using expert system that really deceive individuals, then they barely exist. The phonies aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in general, operating in our media as counterfeited proof. Their function better resembles that of cartoons, especially smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We need to prevent humanizing machine-learning models used in scientific research", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a device a conversation?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the most recent, buzziest systems of artificial basic intelligence are stymmied by the usual issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Expert System, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the original on 3 March 2016, recovered 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, provided and dispersed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead police to disregard inconsistent evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test but showed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT fails at tasks that need genuine humanlike reasoning or an understanding of the physical and social world ... ChatGPT appeared not able to factor logically and tried to count on its vast database of ... truths originated from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI innovations are effective however unreliable. Rules-based systems can not deal with circumstances their developers did not expect. Learning systems are restricted by the information on which they were trained. AI failures have already led to catastrophe. Advanced auto-pilot functions in vehicles, although they carry out well in some scenarios, have actually driven vehicles without warning into trucks, concrete barriers, and parked cars. In the wrong circumstance, AI systems go from supersmart to superdumb in an instant. When an opponent is attempting to control and hack an AI system, the risks are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by brand-new innovations but rely on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.