Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
  • H healthcarestaff
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 22
    • Issues 22
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • Value stream
    • CI/CD
    • Repository
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • Carla Bermudez
  • healthcarestaff
  • Issues
  • #21

Closed
Open
Created Apr 06, 2025 by Carla Bermudez@carlabermudezMaintainer

The Verge Stated It's Technologically Impressive


Announced in 2016, Gym is an open-source Python library designed to assist in the development of reinforcement knowing algorithms. It aimed to standardize how environments are defined in AI research study, making published research more quickly reproducible [24] [144] while supplying users with an easy user interface for communicating with these environments. In 2022, new advancements of Gym have actually been transferred to the library Gymnasium. [145] [146]
Gym Retro

Released in 2018, Gym Retro is a platform for support knowing (RL) research on computer game [147] using RL algorithms and study generalization. Prior RL research focused mainly on enhancing agents to fix single jobs. Gym Retro offers the ability to generalize in between video games with comparable principles but various looks.

RoboSumo

Released in 2017, RoboSumo is a virtual world where humanoid metalearning robot agents initially do not have knowledge of how to even walk, but are provided the objectives of discovering to move and to press the opposing agent out of the ring. [148] Through this adversarial learning process, the representatives discover how to adapt to altering conditions. When a representative is then gotten rid of from this virtual environment and put in a brand-new virtual environment with high winds, the representative braces to remain upright, suggesting it had found out how to balance in a generalized way. [148] [149] OpenAI's Igor Mordatch argued that competitors between agents might create an intelligence "arms race" that could increase a representative's capability to function even outside the context of the competition. [148]
OpenAI 5

OpenAI Five is a group of five OpenAI-curated bots used in the competitive five-on-five computer game Dota 2, that discover to play against human players at a high ability level entirely through trial-and-error algorithms. Before ending up being a group of 5, the first public presentation took place at The International 2017, the yearly best champion tournament for the video game, where Dendi, a professional Ukrainian player, lost against a bot in a live one-on-one matchup. [150] [151] After the match, CTO Greg Brockman explained that the bot had actually learned by playing against itself for two weeks of genuine time, and that the learning software was a step in the instructions of developing software application that can deal with complex tasks like a surgeon. [152] [153] The system utilizes a kind of support knowing, as the bots learn in time by playing against themselves hundreds of times a day for months, and are rewarded for actions such as eliminating an opponent and taking map objectives. [154] [155] [156]
By June 2018, the capability of the bots expanded to play together as a complete team of 5, and they had the ability to beat teams of amateur and semi-professional players. [157] [154] [158] [159] At The International 2018, OpenAI Five played in 2 exhibit matches against expert players, but ended up losing both games. [160] [161] [162] In April 2019, OpenAI Five defeated OG, the ruling world champs of the game at the time, 2:0 in a live exhibition match in San Francisco. [163] [164] The bots' final public appearance came later on that month, where they played in 42,729 total video games in a four-day open online competition, winning 99.4% of those video games. [165]
OpenAI 5's systems in Dota 2's bot player reveals the obstacles of AI systems in multiplayer online battle arena (MOBA) games and how OpenAI Five has shown using deep reinforcement knowing (DRL) agents to attain superhuman proficiency in Dota 2 matches. [166]
Dactyl

Developed in 2018, Dactyl utilizes machine discovering to train a Shadow Hand, a human-like robot hand, to manipulate physical items. [167] It discovers entirely in simulation using the very same RL algorithms and training code as OpenAI Five. OpenAI took on the object orientation problem by utilizing domain randomization, a simulation approach which exposes the student to a variety of experiences instead of attempting to fit to truth. The set-up for Dactyl, aside from having motion tracking electronic cameras, also has RGB cams to enable the robotic to manipulate an arbitrary item by seeing it. In 2018, OpenAI showed that the system was able to manipulate a cube and an octagonal prism. [168]
In 2019, OpenAI demonstrated that Dactyl might resolve a Rubik's Cube. The robot was able to solve the puzzle 60% of the time. Objects like the Rubik's Cube present complex physics that is harder to model. OpenAI did this by improving the effectiveness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation technique of generating gradually harder environments. ADR varies from manual domain randomization by not needing a human to define randomization varieties. [169]
API

In June 2020, OpenAI revealed a multi-purpose API which it said was "for accessing brand-new AI models established by OpenAI" to let designers call on it for "any English language AI job". [170] [171]
Text generation

The business has popularized generative pretrained transformers (GPT). [172]
OpenAI's initial GPT model ("GPT-1")

The original paper on generative pre-training of a transformer-based language model was composed by Alec Radford and his coworkers, and published in preprint on OpenAI's site on June 11, 2018. [173] It demonstrated how a generative model of language might obtain world understanding and procedure long-range dependencies by pre-training on a diverse corpus with long stretches of adjoining text.

GPT-2

Generative Pre-trained Transformer 2 ("GPT-2") is a not being watched transformer language model and the follower to OpenAI's original GPT model ("GPT-1"). GPT-2 was announced in February 2019, with only restricted demonstrative versions at first launched to the general public. The complete version of GPT-2 was not immediately released due to issue about potential abuse, including applications for writing fake news. [174] Some specialists expressed uncertainty that GPT-2 presented a considerable danger.

In reaction to GPT-2, the Allen Institute for Artificial Intelligence reacted with a tool to find "neural fake news". [175] Other scientists, such as Jeremy Howard, warned of "the technology to absolutely fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would drown out all other speech and be impossible to filter". [176] In November 2019, OpenAI launched the complete version of the GPT-2 language model. [177] Several sites host interactive presentations of different instances of GPT-2 and other transformer models. [178] [179] [180]
GPT-2's authors argue unsupervised language models to be general-purpose learners, shown by GPT-2 attaining advanced precision and perplexity on 7 of 8 zero-shot jobs (i.e. the design was not more trained on any task-specific input-output examples).

The corpus it was trained on, called WebText, contains slightly 40 gigabytes of text from URLs shared in Reddit submissions with a minimum of 3 upvotes. It prevents certain issues encoding vocabulary with word tokens by utilizing byte pair encoding. This allows representing any string of characters by encoding both specific characters and multiple-character tokens. [181]
GPT-3

First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is a not being watched transformer language model and the successor to GPT-2. [182] [183] [184] OpenAI specified that the complete version of GPT-3 contained 175 billion criteria, [184] two orders of magnitude bigger than the 1.5 billion [185] in the complete variation of GPT-2 (although GPT-3 designs with as few as 125 million criteria were likewise trained). [186]
OpenAI stated that GPT-3 succeeded at certain "meta-learning" jobs and might generalize the function of a single input-output pair. The GPT-3 release paper provided examples of translation and cross-linguistic transfer knowing in between English and Romanian, and between English and German. [184]
GPT-3 dramatically enhanced benchmark outcomes over GPT-2. OpenAI cautioned that such scaling-up of language designs might be approaching or experiencing the fundamental capability constraints of predictive language designs. [187] Pre-training GPT-3 needed a number of thousand petaflop/s-days [b] of calculate, compared to 10s of petaflop/s-days for the full GPT-2 model. [184] Like its predecessor, [174] the GPT-3 trained model was not right away released to the public for issues of possible abuse, although OpenAI planned to enable gain access to through a paid cloud API after a two-month free personal beta that began in June 2020. [170] [189]
On September 23, 2020, GPT-3 was certified solely to Microsoft. [190] [191]
Codex

Announced in mid-2021, Codex is a descendant of GPT-3 that has furthermore been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was released in personal beta. [194] According to OpenAI, the design can produce working code in over a dozen programming languages, most efficiently in Python. [192]
Several issues with glitches, design flaws and security vulnerabilities were pointed out. [195] [196]
GitHub Copilot has actually been accused of producing copyrighted code, without any author attribution or license. [197]
OpenAI revealed that they would discontinue support for Codex API on March 23, 2023. [198]
GPT-4

On March 14, 2023, OpenAI announced the release of Generative Pre-trained Transformer 4 (GPT-4), capable of accepting text or image inputs. [199] They announced that the updated technology passed a simulated law school bar exam with a score around the top 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 could also check out, evaluate or generate as much as 25,000 words of text, and compose code in all significant programming languages. [200]
Observers reported that the iteration of ChatGPT using GPT-4 was an enhancement on the previous GPT-3.5-based iteration, with the caveat that GPT-4 retained a few of the issues with earlier revisions. [201] GPT-4 is also efficient in taking images as input on ChatGPT. [202] OpenAI has actually decreased to reveal different technical details and statistics about GPT-4, such as the accurate size of the model. [203]
GPT-4o

On May 13, 2024, OpenAI revealed and released GPT-4o, which can process and create text, images and audio. [204] GPT-4o attained advanced lead to voice, multilingual, and vision benchmarks, setting new records in audio speech recognition and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) criteria compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI launched GPT-4o mini, a smaller version of GPT-4o changing GPT-3.5 Turbo on the ChatGPT interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI expects it to be especially useful for business, start-ups and developers looking for to automate services with AI agents. [208]
o1

On September 12, 2024, OpenAI released the o1-preview and o1-mini designs, which have been designed to take more time to believe about their responses, leading to higher precision. These models are especially efficient in science, coding, and thinking tasks, and were made available to ChatGPT Plus and Staff member. [209] [210] In December 2024, o1-preview was changed by o1. [211]
o3

On December 20, 2024, OpenAI unveiled o3, the successor of the o1 reasoning model. OpenAI also unveiled o3-mini, a lighter and much faster variation of OpenAI o3. Since December 21, 2024, this design is not available for public usage. According to OpenAI, they are o3 and o3-mini. [212] [213] Until January 10, 2025, security and security scientists had the opportunity to obtain early access to these designs. [214] The model is called o3 rather than o2 to prevent confusion with telecoms providers O2. [215]
Deep research study

Deep research study is a representative established by OpenAI, unveiled on February 2, 2025. It leverages the capabilities of OpenAI's o3 design to carry out substantial web browsing, data analysis, and synthesis, providing detailed reports within a timeframe of 5 to 30 minutes. [216] With browsing and Python tools made it possible for, it reached an accuracy of 26.6 percent on HLE (Humanity's Last Exam) criteria. [120]
Image classification

CLIP

Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a design that is trained to evaluate the semantic resemblance in between text and images. It can significantly be utilized for image classification. [217]
Text-to-image

DALL-E

Revealed in 2021, DALL-E is a Transformer model that develops images from textual descriptions. [218] DALL-E utilizes a 12-billion-parameter version of GPT-3 to analyze natural language inputs (such as "a green leather bag formed like a pentagon" or "an isometric view of a sad capybara") and generate matching images. It can develop pictures of practical objects ("a stained-glass window with a picture of a blue strawberry") as well as items that do not exist in reality ("a cube with the texture of a porcupine"). Since March 2021, no API or code is available.

DALL-E 2

In April 2022, OpenAI revealed DALL-E 2, an updated version of the model with more realistic results. [219] In December 2022, OpenAI published on GitHub software for Point-E, a new rudimentary system for converting a text description into a 3-dimensional model. [220]
DALL-E 3

In September 2023, OpenAI revealed DALL-E 3, a more effective model better able to generate images from intricate descriptions without manual prompt engineering and render intricate details like hands and text. [221] It was launched to the general public as a ChatGPT Plus feature in October. [222]
Text-to-video

Sora

Sora is a text-to-video design that can produce videos based on short detailed prompts [223] in addition to extend existing videos forwards or in reverse in time. [224] It can produce videos with resolution approximately 1920x1080 or 1080x1920. The maximal length of created videos is unknown.

Sora's development group named it after the Japanese word for "sky", to signify its "unlimited innovative potential". [223] Sora's technology is an adaptation of the technology behind the DALL · E 3 text-to-image model. [225] OpenAI trained the system utilizing publicly-available videos as well as copyrighted videos licensed for yewiki.org that purpose, however did not reveal the number or the specific sources of the videos. [223]
OpenAI showed some Sora-created high-definition videos to the general public on February 15, 2024, specifying that it could create videos up to one minute long. It also shared a technical report highlighting the methods used to train the model, and the model's abilities. [225] It acknowledged some of its imperfections, consisting of struggles replicating complicated physics. [226] Will Douglas Heaven of the MIT Technology Review called the demonstration videos "excellent", but noted that they need to have been cherry-picked and might not represent Sora's normal output. [225]
Despite uncertainty from some scholastic leaders following Sora's public demonstration, noteworthy entertainment-industry figures have shown significant interest in the technology's potential. In an interview, actor/filmmaker Tyler Perry expressed his astonishment at the innovation's capability to generate realistic video from text descriptions, mentioning its prospective to revolutionize storytelling and content production. He said that his excitement about Sora's possibilities was so strong that he had chosen to stop briefly prepare for expanding his Atlanta-based motion picture studio. [227]
Speech-to-text

Whisper

Released in 2022, Whisper is a general-purpose speech acknowledgment model. [228] It is trained on a big dataset of diverse audio and is also a multi-task design that can carry out multilingual speech acknowledgment in addition to speech translation and language identification. [229]
Music generation

MuseNet

Released in 2019, MuseNet is a deep neural net trained to anticipate subsequent musical notes in MIDI music files. It can generate songs with 10 instruments in 15 styles. According to The Verge, a tune generated by MuseNet tends to start fairly but then fall into mayhem the longer it plays. [230] [231] In pop culture, preliminary applications of this tool were used as early as 2020 for the web psychological thriller Ben Drowned to produce music for the titular character. [232] [233]
Jukebox

Released in 2020, Jukebox is an open-sourced algorithm to generate music with vocals. After training on 1.2 million samples, the system accepts a genre, artist, and a snippet of lyrics and outputs tune samples. OpenAI specified the tunes "show local musical coherence [and] follow standard chord patterns" but acknowledged that the tunes do not have "familiar larger musical structures such as choruses that duplicate" which "there is a significant space" in between Jukebox and human-generated music. The Verge stated "It's highly outstanding, even if the results seem like mushy versions of songs that might feel familiar", while Business Insider mentioned "surprisingly, a few of the resulting tunes are memorable and sound legitimate". [234] [235] [236]
User user interfaces

Debate Game

In 2018, OpenAI launched the Debate Game, which teaches machines to discuss toy problems in front of a human judge. The purpose is to research study whether such an approach may help in auditing AI choices and in establishing explainable AI. [237] [238]
Microscope

Released in 2020, Microscope [239] is a collection of visualizations of every significant layer and neuron of 8 neural network designs which are typically studied in interpretability. [240] Microscope was developed to evaluate the functions that form inside these neural networks quickly. The designs consisted of are AlexNet, VGG-19, different versions of Inception, and different variations of CLIP Resnet. [241]
ChatGPT

Launched in November 2022, ChatGPT is a synthetic intelligence tool developed on top of GPT-3 that offers a conversational user interface that permits users to ask concerns in natural language. The system then reacts with an answer within seconds.

Assignee
Assign to
Time tracking