Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
  • P pleasantprogrammer
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 78
    • Issues 78
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Package Registry
    • Infrastructure Registry
  • Analytics
    • Analytics
    • Value stream
    • CI/CD
    • Repository
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • Alexis Tilton
  • pleasantprogrammer
  • Issues
  • #75

Closed
Open
Created May 29, 2025 by Alexis Tilton@alexistilton06Maintainer

The Verge Stated It's Technologically Impressive


Announced in 2016, Gym is an open-source Python library designed to assist in the development of reinforcement learning algorithms. It aimed to standardize how environments are specified in AI research, making released research study more quickly reproducible [24] [144] while supplying users with a simple interface for interacting with these environments. In 2022, new advancements of Gym have actually been moved to the library Gymnasium. [145] [146]
Gym Retro

Released in 2018, Gym Retro is a platform for reinforcement learning (RL) research on video games [147] utilizing RL algorithms and study generalization. Prior yewiki.org RL research study focused mainly on enhancing agents to resolve single jobs. Gym Retro gives the capability to generalize between video games with similar principles but different appearances.

RoboSumo

Released in 2017, RoboSumo is a virtual world where humanoid metalearning robotic representatives at first lack knowledge of how to even stroll, but are offered the objectives of finding out to move and to push the opposing agent out of the ring. [148] Through this adversarial knowing process, the agents find out how to adapt to altering conditions. When an agent is then removed from this virtual environment and positioned in a brand-new virtual environment with high winds, the representative braces to remain upright, suggesting it had actually learned how to stabilize in a generalized way. [148] [149] OpenAI's Igor systemcheck-wiki.de Mordatch argued that competition between agents could develop an intelligence "arms race" that could increase a representative's ability to function even outside the context of the competitors. [148]
OpenAI 5

OpenAI Five is a team of 5 OpenAI-curated bots utilized in the competitive five-on-five video game Dota 2, that find out to play against human players at a high ability level entirely through experimental algorithms. Before ending up being a team of 5, the first public demonstration happened at The International 2017, the annual premiere championship tournament for the game, where Dendi, a professional Ukrainian player, lost against a bot in a live individually matchup. [150] [151] After the match, CTO Greg Brockman explained that the bot had discovered by playing against itself for 2 weeks of genuine time, which the learning software was a step in the direction of creating software application that can deal with intricate tasks like a cosmetic surgeon. [152] [153] The system uses a kind of reinforcement learning, as the bots learn in time by playing against themselves hundreds of times a day for months, and are rewarded for actions such as eliminating an opponent and taking map goals. [154] [155] [156]
By June 2018, the capability of the bots broadened to play together as a complete team of 5, and they were able to beat groups of amateur and semi-professional gamers. [157] [154] [158] [159] At The International 2018, OpenAI Five played in 2 exhibition matches against professional players, but ended up losing both video games. [160] [161] [162] In April 2019, OpenAI Five beat OG, the ruling world champs of the game at the time, 2:0 in a live exhibition match in San Francisco. [163] [164] The bots' last public appearance came later on that month, where they played in 42,729 total video games in a four-day open online competition, winning 99.4% of those games. [165]
OpenAI 5's mechanisms in Dota 2's bot player shows the challenges of AI systems in multiplayer online battle arena (MOBA) games and how OpenAI Five has actually shown the use of deep support knowing (DRL) agents to attain superhuman skills in Dota 2 matches. [166]
Dactyl

Developed in 2018, Dactyl uses maker learning to train a Shadow Hand, a human-like robot hand, to control physical things. [167] It finds out entirely in simulation using the very same RL algorithms and training code as OpenAI Five. OpenAI tackled the object orientation problem by utilizing domain randomization, a simulation method which exposes the learner to a variety of experiences rather than attempting to fit to truth. The set-up for Dactyl, aside from having motion tracking video cameras, also has RGB video cameras to permit the robotic to control an approximate object by seeing it. In 2018, OpenAI revealed that the system was able to manipulate a cube and an octagonal prism. [168]
In 2019, OpenAI demonstrated that Dactyl could solve a Rubik's Cube. The robotic was able to resolve the puzzle 60% of the time. Objects like the Rubik's Cube present intricate physics that is harder to design. OpenAI did this by improving the robustness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation approach of creating progressively harder environments. ADR varies from manual domain randomization by not needing a human to define randomization ranges. [169]
API

In June 2020, OpenAI announced a multi-purpose API which it said was "for accessing brand-new AI models established by OpenAI" to let designers call on it for "any English language AI job". [170] [171]
Text generation

The company has popularized generative pretrained transformers (GPT). [172]
OpenAI's original GPT design ("GPT-1")

The initial paper on generative pre-training of a transformer-based language design was composed by Alec Radford and his colleagues, and published in preprint on OpenAI's website on June 11, 2018. [173] It demonstrated how a generative design of language might obtain world knowledge and process long-range dependencies by pre-training on a varied corpus with long stretches of adjoining text.

GPT-2

Generative Pre-trained Transformer 2 ("GPT-2") is a not being watched transformer language model and the successor to OpenAI's initial GPT design ("GPT-1"). GPT-2 was revealed in February 2019, with only minimal demonstrative versions at first released to the general public. The full variation of GPT-2 was not immediately released due to concern about prospective misuse, including applications for writing phony news. [174] Some specialists expressed uncertainty that GPT-2 positioned a considerable danger.

In action to GPT-2, the Allen Institute for Artificial Intelligence responded with a tool to spot "neural fake news". [175] Other researchers, such as Jeremy Howard, hb9lc.org warned of "the technology to completely fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would muffle all other speech and be difficult to filter". [176] In November 2019, OpenAI launched the complete variation of the GPT-2 language design. [177] Several sites host interactive presentations of different circumstances of GPT-2 and other transformer models. [178] [179] [180]
GPT-2's authors argue without supervision language models to be general-purpose students, highlighted by GPT-2 attaining state-of-the-art accuracy and perplexity on 7 of 8 zero-shot jobs (i.e. the model was not more trained on any task-specific input-output examples).

The corpus it was trained on, called WebText, contains a little 40 gigabytes of text from URLs shared in Reddit submissions with a minimum of 3 upvotes. It avoids certain issues encoding vocabulary with word tokens by utilizing byte pair encoding. This permits representing any string of characters by encoding both specific characters and multiple-character tokens. [181]
GPT-3

First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is an unsupervised transformer language design and the follower to GPT-2. [182] [183] [184] OpenAI specified that the full variation of GPT-3 contained 175 billion specifications, [184] 2 orders of magnitude bigger than the 1.5 billion [185] in the full version of GPT-2 (although GPT-3 models with as couple of as 125 million criteria were also trained). [186]
OpenAI stated that GPT-3 prospered at certain "meta-learning" jobs and could generalize the purpose of a single input-output pair. The GPT-3 release paper provided examples of translation and cross-linguistic transfer learning in between English and Romanian, and in between English and German. [184]
GPT-3 dramatically improved benchmark results over GPT-2. OpenAI warned that such scaling-up of language models might be approaching or encountering the essential ability constraints of predictive language designs. [187] Pre-training GPT-3 needed several thousand petaflop/s-days [b] of compute, compared to tens of petaflop/s-days for the full GPT-2 model. [184] Like its predecessor, [174] the GPT-3 trained model was not instantly launched to the public for issues of possible abuse, although OpenAI prepared to permit gain access to through a paid cloud API after a two-month totally free personal beta that began in June 2020. [170] [189]
On September 23, 2020, GPT-3 was certified solely to Microsoft. [190] [191]
Codex

Announced in mid-2021, Codex is a descendant of GPT-3 that has additionally been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was released in private beta. [194] According to OpenAI, the model can produce working code in over a dozen shows languages, a lot of efficiently in Python. [192]
Several problems with glitches, design flaws and security vulnerabilities were cited. [195] [196]
GitHub Copilot has been implicated of producing copyrighted code, with no author attribution or license. [197]
OpenAI revealed that they would discontinue support for Codex API on March 23, 2023. [198]
GPT-4

On March 14, 2023, OpenAI revealed the release of Generative Pre-trained Transformer 4 (GPT-4), capable of accepting text or image inputs. [199] They announced that the upgraded technology passed a simulated law school bar examination with a score around the top 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 might also read, analyze or create as much as 25,000 words of text, and write code in all major shows languages. [200]
Observers reported that the iteration of ChatGPT utilizing GPT-4 was an enhancement on the previous GPT-3.5-based model, with the caveat that GPT-4 retained a few of the issues with earlier modifications. [201] GPT-4 is also capable of taking images as input on ChatGPT. [202] OpenAI has declined to expose different technical details and statistics about GPT-4, such as the exact size of the design. [203]
GPT-4o

On May 13, 2024, OpenAI revealed and released GPT-4o, which can process and generate text, images and audio. [204] GPT-4o attained state-of-the-art outcomes in voice, multilingual, and vision criteria, setting new records in audio speech acknowledgment and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) benchmark compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI released GPT-4o mini, a smaller sized version of GPT-4o changing GPT-3.5 Turbo on the ChatGPT interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI anticipates it to be particularly useful for business, startups and designers seeking to automate services with AI agents. [208]
o1

On September 12, 2024, OpenAI launched the o1-preview and o1-mini models, which have actually been created to take more time to consider their actions, leading to higher accuracy. These designs are particularly effective in science, coding, and thinking tasks, and pediascape.science were made available to ChatGPT Plus and Staff member. [209] [210] In December 2024, o1-preview was replaced by o1. [211]
o3

On December 20, 2024, OpenAI unveiled o3, the successor of the o1 reasoning model. OpenAI also revealed o3-mini, a lighter and faster variation of OpenAI o3. Since December 21, 2024, this model is not available for public use. According to OpenAI, they are testing o3 and o3-mini. [212] [213] Until January 10, 2025, safety and security researchers had the chance to obtain early access to these models. [214] The design is called o3 rather than o2 to prevent confusion with telecoms companies O2. [215]
Deep research study

Deep research study is a representative established by OpenAI, revealed on February 2, 2025. It leverages the capabilities of OpenAI's o3 design to carry out substantial web browsing, data analysis, and synthesis, delivering detailed reports within a timeframe of 5 to 30 minutes. [216] With browsing and Python tools made it possible for, it reached a precision of 26.6 percent on HLE (Humanity's Last Exam) standard. [120]
Image category

CLIP

Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a model that is trained to examine the semantic similarity between text and images. It can significantly be utilized for image category. [217]
Text-to-image

DALL-E

Revealed in 2021, DALL-E is a Transformer model that creates images from textual descriptions. [218] DALL-E utilizes a 12-billion-parameter variation of GPT-3 to translate natural language inputs (such as "a green leather purse formed like a pentagon" or "an isometric view of a sad capybara") and create matching images. It can develop images of sensible objects ("a stained-glass window with a picture of a blue strawberry") in addition to things that do not exist in truth ("a cube with the texture of a porcupine"). As of March 2021, no API or code is available.

DALL-E 2

In April 2022, OpenAI revealed DALL-E 2, an upgraded variation of the model with more sensible outcomes. [219] In December 2022, OpenAI published on GitHub software application for Point-E, a new fundamental system for converting a text description into a 3-dimensional design. [220]
DALL-E 3

In September 2023, OpenAI announced DALL-E 3, a more powerful model much better able to produce images from intricate descriptions without manual timely engineering and render complicated details like hands and text. [221] It was launched to the general public as a ChatGPT Plus feature in October. [222]
Text-to-video

Sora

Sora is a text-to-video model that can create videos based on brief detailed prompts [223] as well as extend existing videos forwards or backwards in time. [224] It can create videos with resolution up to 1920x1080 or 1080x1920. The maximal length of generated videos is unidentified.

Sora's development team named it after the Japanese word for "sky", yewiki.org to signify its "limitless innovative potential". [223] Sora's innovation is an adaptation of the technology behind the DALL · E 3 text-to-image design. [225] OpenAI trained the system utilizing publicly-available videos along with copyrighted videos certified for that function, but did not reveal the number or the precise sources of the videos. [223]
OpenAI demonstrated some Sora-created high-definition videos to the public on February 15, 2024, stating that it could create videos as much as one minute long. It likewise shared a technical report highlighting the approaches used to train the model, and the model's capabilities. [225] It acknowledged a few of its drawbacks, including struggles simulating complicated physics. [226] Will Douglas Heaven of the MIT Technology Review called the demonstration videos "impressive", however kept in mind that they must have been cherry-picked and might not represent Sora's normal output. [225]
Despite uncertainty from some scholastic leaders following Sora's public demonstration, surgiteams.com significant entertainment-industry figures have revealed considerable interest in the technology's capacity. In an interview, actor/ Tyler Perry expressed his astonishment at the technology's ability to create realistic video from text descriptions, mentioning its potential to transform storytelling and material production. He said that his excitement about Sora's possibilities was so strong that he had actually chosen to stop briefly prepare for broadening his Atlanta-based movie studio. [227]
Speech-to-text

Whisper

Released in 2022, bytes-the-dust.com Whisper is a general-purpose speech recognition design. [228] It is trained on a large dataset of diverse audio and is also a multi-task design that can carry out multilingual speech recognition in addition to speech translation and language identification. [229]
Music generation

MuseNet

Released in 2019, MuseNet is a deep neural net trained to forecast subsequent musical notes in MIDI music files. It can generate tunes with 10 instruments in 15 designs. According to The Verge, a song created by MuseNet tends to begin fairly but then fall under turmoil the longer it plays. [230] [231] In pop culture, preliminary applications of this tool were used as early as 2020 for the web mental thriller Ben Drowned to produce music for the titular character. [232] [233]
Jukebox

Released in 2020, Jukebox is an open-sourced algorithm to generate music with vocals. After training on 1.2 million samples, the system accepts a category, artist, and a bit of lyrics and outputs song samples. OpenAI mentioned the tunes "show regional musical coherence [and] follow standard chord patterns" but acknowledged that the tunes do not have "familiar larger musical structures such as choruses that repeat" which "there is a considerable gap" in between Jukebox and human-generated music. The Verge stated "It's technically outstanding, even if the results seem like mushy versions of songs that may feel familiar", while Business Insider mentioned "remarkably, some of the resulting songs are catchy and sound genuine". [234] [235] [236]
Interface

Debate Game

In 2018, OpenAI introduced the Debate Game, which teaches machines to debate toy problems in front of a human judge. The function is to research study whether such a method may assist in auditing AI choices and in developing explainable AI. [237] [238]
Microscope

Released in 2020, Microscope [239] is a collection of visualizations of every substantial layer and neuron of 8 neural network models which are frequently studied in interpretability. [240] Microscope was developed to examine the features that form inside these neural networks easily. The designs included are AlexNet, VGG-19, various variations of Inception, and different versions of CLIP Resnet. [241]
ChatGPT

Launched in November 2022, ChatGPT is an artificial intelligence tool developed on top of GPT-3 that provides a conversational user interface that enables users to ask questions in natural language. The system then reacts with an answer within seconds.

Assignee
Assign to
Time tracking